Answer:
(a). Z = 54.54 ohm
(b). R = 36 ohm
(c). The circuit will be Capacitive.
Explanation:
Given data
I = 2.75 A
Voltage = 150 V
rad = 48.72°
(a). Impedance of the circuit is given by


Z = 54.54 ohm
(b). We know that resistance of the circuit is given by

Put the values of Z &
in above formula we get

R = 36 ohm
(c). Since the phase angle is negative so the circuit will be Capacitive.
Answer:
The acceleration is 6 [m/s^2]
Explanation:
We can find the acceleration of the roller coaster using the kinematic equation for uniformly accelerated motion.
![v_{f} =v_{i} + a*t\\where:\\v_{f} = final velocity = 22 [m/s]\\v_{i} = initial velocity = 4 [m/s]\\t = time = 3 [s]\\](https://tex.z-dn.net/?f=v_%7Bf%7D%20%3Dv_%7Bi%7D%20%2B%20a%2At%5C%5Cwhere%3A%5C%5Cv_%7Bf%7D%20%3D%20final%20velocity%20%3D%2022%20%5Bm%2Fs%5D%5C%5Cv_%7Bi%7D%20%3D%20initial%20velocity%20%3D%204%20%5Bm%2Fs%5D%5C%5Ct%20%3D%20time%20%3D%203%20%5Bs%5D%5C%5C)
Now replacing the values we have:
![a=\frac{v_{f} - v_{i} }{t} \\a=\frac{22 - 4 }{3}\\a = 6 [m/s^{2} ]](https://tex.z-dn.net/?f=a%3D%5Cfrac%7Bv_%7Bf%7D%20-%20v_%7Bi%7D%20%7D%7Bt%7D%20%5C%5Ca%3D%5Cfrac%7B22%20-%204%20%7D%7B3%7D%5C%5Ca%20%3D%206%20%5Bm%2Fs%5E%7B2%7D%20%5D)
Answer:
8. acceleration =
= 1 unit .
9. acceleration =
= -1 unit.
10. acceleration =
= 0 units.
Explanation:
8. i) acceleration = velocity / time
ii) In this figure velocity = time
iii) therefore acceleration =
= 1 unit .
9. i) acceleration = velocity / time
ii) In this figure 4 = m + 5, therefore m = -1
therefore velocity = (-0.5
time) + 5
iii) therefore acceleration =
= -1 units.
10.) velocity is constant at 2
therefore acceleration =
= 0 units
The answer is True since thats what usually goes on
Answer:
The average power the woman exerts is 0.5 kW
Explanation:
We note that power, P = The rate at which work is done = Work/Time
Work = Energy
The total work done is the potential energy gained which is the energy due to vertical displacement
Given that the vertical displacement = 5.0 m, we have
Total work done = Potential energy gained = Mass, m × Acceleration due to gravity, g × Vertical height, h
m = 51 kg
g = Constant = 9.81 m/s²
h = 5.0 m
Also, time, t = 5.0 s
Total work done = 51 kg × 9.81 m/s²× 5 m = 2501.55 kg·m²/s² = 2501.55 J
P = 2501.55 J/(5 s) = 500.31 J/s = 500.31 W ≈ 500 W = 0.5 kW.