Answer:
so initial speed of the rock is 30.32 m/s
correct answer is b. 30.3 m/s
Explanation:
given data
h = 15.0m
v = 25m/s
weight of the rock m = 3.00N
solution
we use here work-energy theorem that is express as here
work = change in the kinetic energy ..............................1
so it can be written as
work = force × distance ...................2
and
KE is express as
K.E = 0.5 × m × v²
and it can be written as
F × d = 0.5 × m × (vf)² - (vi)² ......................3
here
m is mass and vi and vf is initial and final velocity
F = mg = m (-9.8) , d = 15 m and v{f} = 25 m/s
so put value in equation 3 we get
m (-9.8) × 15 = 0.5 × m × (25)² - (vi)²
solve it we get
(vi)² = 919
vi = 30.32 m/s
so initial speed of the rock is 30.32 m/s
Answer:
The formula that links energy and power is: Energy = Power x Time. The unit of energy is the joule, the unit of power is the watt, and the unit of time is the second.
Explanation:
Answer:
When the same amount of heat is added to cold sand and cold water, the temperature change of sand will be higher because of its lower specific heat capacity.
What is specific heat capacity?
Specific heat capacity is the quantity
of heat required to raise a unit mass of
a substance by 1 kelvin.
Specific heat capacity of water and sand
{<em>refer to the above attachment}</em>
Δθ = Q/mc
Thus, for an equal mass of water and sand, when the same amount of heat is added to cold sand and cold water, the temperature change of sand will be higher because of its lower specific heat capacity.
0.345 m.
<h3>Explanation</h3>
The wavelength is the distance that the wave travels in each cycle. The wave travels 345 meters in each second. Let the wavelength of this wave be
. That's the distance the wave travels in one cycle.
The frequency of the sound wave is 1 000 Hz, meaning that there are 1 000 cycles in each second. The wave travels a distance of 1 000 wavelengths in one second. That would be a distance of
.
From the speed of the wave, the wave travels 345 meters in one second. In other words,
.
.
To generalize:
,
where
wavelength of the wave,
the speed of the wave, and
the frequency of the wave.
Power = (force) x (distance / time) = force x speed .
We know the force = 800N.
We have a speed = 30km/hr, but in order to use it in the power formula,
it has to be in meters/second, so we have some work to do first.
(30 km/hr) x (1,000 m/km) x (1 hr / 3,600 sec) = 300 / 36 m/sec .
Power = (force) x (speed) = (800 N) x (300/36 m/s) = <em>6-2/3 kilowatts </em>
Work = (power) x (time) = (6,666-2/3 joule/sec) x (25sec) = <em>166,666-2/3 joules</em>.
The figure for power is slightly weird ... 746 watts = 1 horsepower,
so the truck's engine is only delivering about 8.9 horsepower.
Very fuel-efficient, but I don't think they drive trucks that way.