Answer:
a. Zin = 41.25 - j 16.35 Ω
b. V₁ = 143. 6 e⁻ ¹¹ ⁴⁶
c. Pin = 216 w
d. PL = Pin = 216 w
e. Pg = 478.4 w , Pzg = 262.4 w
Explanation:
a.
Zin = Zo * [ ZL + j Zo Tan (βl) ] / [ Zo + j ZL Tan (βl) ]
βl = 2π / λ * 0.15 λ = 54 °
Zin = 50 * [ 75 + j 50 Tan (54) ] / [ 50 + j 75 Tan (54) ]
Zin = 41.25 - j 16.35 Ω
b.
I₁ = Vg / Zg + Zin ⇒ I₁ = 300 / 41.25 - j 16.35 = 3.24 e ¹⁰ ¹⁶
V₁ = I₁ * Zin = 3.24 e ¹⁰ ¹⁶ * ( 41.25 - j 16.35)
V₁ = 143. 6 e⁻ ¹¹ ⁴⁶
c.
Pin = ¹/₂ * Re * [V₁ * I₁]
Pin = ¹/₂ * 143.6 ⁻¹¹ ⁴⁶ * 3.24 e ⁻ ¹⁰ ¹⁶ = 143.6 * 3.24 / 2 * cos (21.62)
Pin = 216 w
d.
The power PL and Pin are the same as the line is lossless input to the line ends up in the load so
PL = Pin
PL = 216 w
e.
Pg Generator
Pg = ¹/₂ * Re * [ V₁ * I₁ ] = 486 * cos (10.16)
Pg = 478.4 w
Pzg dissipated
Pzg = ¹/₂ * I² * Zg = ¹/₂ * 3.24² * 50
Pzg = 262.4 w
Answer:
2 Newtons
Explanation:

Therefore, your mass would be 1kg and your acceleration would be 2m/s/s
Plug the numbers into the equation:

which will equal

Answer:
high, low
Explanation:
- Energy always flows from a higher level to a lower level.
- It is analogous to the waterfall where waterfalls from a higher level to a lower level.
- So in the case of the pressure of the gas, when there are any numbers of molecules in a given volume of space. The gas is said to be at high pressure.
- When there are fewer molecules in the given volume. The gas is said to be at lower pressure.
- Due to a large number of atoms, the high-pressure gas exerts more force on the container than the force exerted by the low-pressure gas.
- If a hose is connected between these two containers, gas rushes from high pressure to the low pressure. Since the force exerted by the high-pressure gas is greater than that of low-pressure gas.
So, the wind tends to move from high-pressure areas to low pressure.
Answer:
(a). Index of refraction are
= 1.344 &
= 1.406
(b). The velocity of red light in the glass
2.23 ×
The velocity of violet light in the glass
2.13 ×
Explanation:
We know that
Law of reflection is

Here
= angle of incidence
= angle of refraction
(a). For red light
1 ×
=
× 
= 1.344
For violet light
1 ×
=
× 
= 1.406
(b). Index of refraction is given by

= 1.344


2.23 ×
This is the velocity of red light in the glass.
The velocity of violet light in the glass is given by

2.13 ×
This is the velocity of violet light in the glass.