Using row 4:
<span>coefficients are: 1, 4, 6, 4, 1 </span>
<span>a^4 + a^3b + a^2b^2 + ab^3 + b^4 </span>
<span>Now adding the coefficients: </span>
<span>1a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + 1b^4 </span>
<span>Substitute a and b: </span>
<span>a = 4x </span>
<span>
b = -3y </span>
<span>1(4x)^4 + 4(4x)^3(-3y) + 6(4x)^2(-3y)^2 + 4(4x)(-3y)^3 + 1(-3y)^4 </span>
<span>Now simplify the above: </span>
<span>256x^4 - 768x^3y + 864x^2y^2 - 432xy^3 + 81y^4 </span>
X+4=2x+5
-1=x
hope this helps
Answer:
<h2><u>[D] 13.9</u></h2>
Explanation:
- <em>Pythagorean theorem: a² + b² = c²</em>
- <em>Solve for hypotenuse (side x) using: c = √a² + b²</em>
12.8² + 5.3² = 191.93
√191.93
= 13.8538803229
<em>Round the answer</em>
13.9
<span> 3(x+2y)+5x−y+1
Use distributive property
3x+6y+5x-y+1
Add 5x to 3x
8x+6y-y+1
Subtract y from 6y
Final Answer: 8x+5y+1</span>