Answer:
a) HNO3
b) 26.8g (3 s.f.)
c) 1.29g (3 s.f.)
Please see the attached pictures for full solution.
To balance an equation, ensure that the number of atoms for each element is the same on both sides.
The question is basically asking what is happening to the energy (that is in the form of heat) when it is being absorbed by an object. The energy being absorbed from the heat source is being turned into kinetic energy. This can be explained by temperature change. As you add more heat to an object, the temperature rises. Since temperature is the average kinetic energy of all of the molecules in an object, we can say that as temperature rises so does the kinetic energy of the molecules in the object. Due to the fact that heat is causing the temperature to increase, we can say that the energy from the heat is being turned into kinetic energy.
I hope this helps. Let me know in the comments if anything is unclear.
Answer:
Population of duck and frog will change with the change
Explanation:
The complete question is
Scientists are studying animals in a large lake area. In this lake area, both owls and raccoons eat ducks, and ducks eat frogs. The data shows that recently the size of the raccoon population decreased. How will the decrease in the raccoon population affect the other populations? Be sure to explain whether the owl population, the duck population, and the frog population will change, and why.
- Owl population will change
-
Duck population will change
-
Frog population will change
Solution
Raccoon eat duck and duck eat frog. Now if the population of Raccoon decreases then the number of predators of duck will decrease thereby increasing the population of duck.
The higher will be the number of ducks, the more frogs they will consume thereby decreasing the population of frogs
Hence both the population of duck and frog will change with the change

As depth increases, the density of the layers decreases.
Ammonia is colorless gas with a characteristic smell. Its density is 0.589 times than air which makes it lighter than air. Ammonia can be easily liquefied due to the hydrogen bonding between the molecules. The boiling point is at -33.3 degrees Celsius and the freezing point is at -77.7 degrees Celsius.