Answer:
Respiration
Explanation:
The lungs and respiratory system allow us to breathe. They bring oxygen into our bodies (called inspiration, or inhalation) and send carbon dioxide out (called expiration, or exhalation). This exchange of oxygen and carbon dioxide is called respiration.
Answer:
t = 0.55[sg]; v = 0.9[m/s]
Explanation:
In order to solve this problem we must establish the initial conditions with which we can work.
y = initial elevation = - 1.5 [m]
x = landing distance = 0.5 [m]
We set "y" with a negative value, as this height is below the table level.
in the following equation (vy)o is equal to zero because there is no velocity in the y component.
therefore:
![y = (v_{y})_{o}*t - \frac{1}{2} *g*t^{2}\\ where:\\(v_{y})_{o}=0[m/s]\\t = time [sg]\\g = gravity = 9.81[\frac{m}{s^{2}}]\\ -1.5 = 0*t -4.905*t^{2} \\t = \sqrt{\frac{1.5}{4.905} } \\t=0.55[s]](https://tex.z-dn.net/?f=y%20%3D%20%28v_%7By%7D%29_%7Bo%7D%2At%20-%20%5Cfrac%7B1%7D%7B2%7D%20%2Ag%2At%5E%7B2%7D%5C%5C%20%20%20where%3A%5C%5C%28v_%7By%7D%29_%7Bo%7D%3D0%5Bm%2Fs%5D%5C%5Ct%20%3D%20time%20%5Bsg%5D%5C%5Cg%20%3D%20gravity%20%3D%209.81%5B%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%7D%5D%5C%5C%20-1.5%20%3D%200%2At%20-4.905%2At%5E%7B2%7D%20%5C%5Ct%20%3D%20%5Csqrt%7B%5Cfrac%7B1.5%7D%7B4.905%7D%20%7D%20%5C%5Ct%3D0.55%5Bs%5D)
Now we can find the initial velocity, It is important to note that the initial velocity has velocity components only in the x-axis.
![(v_{x} )_{o} = \frac{x}{t} \\(v_{x} )_{o} = \frac{0.5}{0.55} \\(v_{x} )_{o} =0.9[m/s]](https://tex.z-dn.net/?f=%28v_%7Bx%7D%20%29_%7Bo%7D%20%3D%20%5Cfrac%7Bx%7D%7Bt%7D%20%5C%5C%28v_%7Bx%7D%20%29_%7Bo%7D%20%3D%20%5Cfrac%7B0.5%7D%7B0.55%7D%20%5C%5C%28v_%7Bx%7D%20%29_%7Bo%7D%20%3D0.9%5Bm%2Fs%5D)
Lifting the book means that the object gains gravitational potential energy. GPE=mass*gravitational field strength*height,
∴m=GPE/gh, m=25.5/10*1.5=1.7 kg
If you mean the tree, evergreen trees can exploded if theres extreme stress on the trunk
Answer:

Explanation:
Here by energy equivalence we can say that energy given by the metal piece is same as the energy absorbed by the water
so here we have

here we know that







