Answer:
nπ + π/2 for any integer n
Explanation:
Since destructive interference occurs every odd multiple of half wavelength, that is π/2, 3π/2, 5π/2 where the interference is half wavelength and in general, (n + 1/2)π where n is an integer. So, nπ + π/2 for any integer n
Answer:
The total resistance of the wire is = 
Explanation:
Since the wires will both be in contact with the voltage source at the same time and the current flows along in their length-wise direction, the two wires will be considered to be in parallel.
Hence, for resistances in parallel, the total resistance, 

Parameters given:
Length of wire = 1 m
Cross sectional area of copper 
Cross sectional area of aluminium wire
![A_{al}= \pi( R^{2}-r^{2})\\\\ = \pi \times [ (2\times 10^{-3} )^{2}-(1\times 10^{-3} )^{2}] =9.42\times10^{-6} m^{2}\\](https://tex.z-dn.net/?f=A_%7Bal%7D%3D%20%5Cpi%28%20R%5E%7B2%7D-r%5E%7B2%7D%29%5C%5C%5C%5C%20%3D%20%5Cpi%20%5Ctimes%20%5B%20%282%5Ctimes%2010%5E%7B-3%7D%20%20%29%5E%7B2%7D-%281%5Ctimes%2010%5E%7B-3%7D%20%20%29%5E%7B2%7D%5D%20%3D9.42%5Ctimes10%5E%7B-6%7D%20m%5E%7B2%7D%5C%5C)
Resistivity of copper 
Resistivity of Aluminium 
Resistance of copper 
Resistance of aluminium 
The total resistance of the wire can be obtained as follows;


∴ The total resistance of the wire = 
Answer:
c) curves downward, below the initial velocity vector
Explanation:
A projectile is usually launched from a height, where it is launched with an initial velocity. From that point the gravitational force begins to act on the projectile causing it to decay. As time passes, the projectile advances but its height decreases. So its trajectory is curved downward, below the initial velocity vector.
In a real system of levers, wheels, or pulleys, the AMA is less than the IMA because of friction.
AMA (Actual mechanical advantage) is found by dividing output force by effort force. The actual mechanical advantage will always be less than the ideal mechanical advantage. The ideal mechanical advantage assumes perfect efficiency which doesn't account for friction, while actual mechanical advantage does. Therefore; the IMA is always greater than the actual mechanical advantage because all machines must overcome friction.
Answer:
The acceleration is equal to the net force divided by the mass. If the net force acting on an object doubles, its acceleration is doubled. If the mass is doubled, then acceleration will be halved. If both the net force and the mass are doubled, the acceleration will be unchanged.