The best synonym for that kind of legend is key. Hope this helps.
Answer:
6194.84
Step-by-step explanation:
Using the formula for calculating accumulated annuity amount
F = P × ([1 + I]^N - 1 )/I
Where P is the payment amount. I is equal to the interest (discount) rate and N number of duration
For 40 years,
X = 100[(1 + i)^40 + (1 + i)^36 + · · ·+ (1 + i)^4]
=[100 × (1+i)^4 × (1 - (1 + i)^40]/1 − (1 + i)^4
For 20 years,
Y = A(20) = 100[(1+i)^20+(1+i)^16+· · ·+(1+i)^4]
Using X = 5Y (5 times the accumulated amount in the account at the ned of 20 years) and using a difference of squares on the left side gives
1 + (1 + i)^20 = 5
so (1 + i)^20 = 4
so (1 + i)^4 = 4^0.2 = 1.319508
Hence X = [100 × (1 + i)^4 × (1 − (1 + i)^40)] / 1 − (1 + i)^4
= [100×1.3195×(1−4^2)] / 1−1.3195
X = 6194.84
Answer:
79°c - (-3°c) = 82°c
Step-by-step explanation:
this is because we need to calculate the total gap between those numbers through number line. I have attached the photo, have a look over there.
Emily gave Jake 20% of the buttons. 20% = 15 buttons, and 15 x 5 = 75
Looking at the graph closely we can see that the heart rate increases from 0 to 6 min then became steady from 6 to 25 min then finally decreases from 25 to 30 min. Therefore the correct answer is:
“The heart rate increases for 6 minutes, remains constant for 19 minutes, and then gradually decreases for 5 minutes.”
In real life cardiac exercises, we can interpret that the period from 0 to 6 min is the period where the person is still warming up thus leading to an increase in heart rate. At 6 min, the person is fully warmed up hence reaching a stable heart rate. Then at 25 min, the person starts cooling down which means that the exercise is ending soon.