1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
serious [3.7K]
3 years ago
5

Fran wants to rent a scooter for the afternoon, but she can spend no more....

Mathematics
2 answers:
Marrrta [24]3 years ago
8 0

It is 6 hour because if you multiply 7.50 which is 35.50 then add 12.50 that will come out to 50

MariettaO [177]3 years ago
3 0

Answer:

12.50 + (7.5)(h-1) ≤ 50

6 hours or less

Step-by-step explanation:

The first hour is 12.50.  Each additional hour is 7.50

Let h be the number of hours

12.50 + (7.5)(h-1)

We use h-1 since the first hour is 12.50

This must be less than  or equal to 50

12.50 + (7.5)(h-1) ≤ 50

Now we solve the inequality

Subtract 12.50 from each side

12.50-12.50 + (7.5)(h-1) ≤ 50-12.50

(7.5)(h-1) ≤ 37.50

Divide by 7.5 on each side

 (7.5)/7.5(h-1) ≤ 37.50/7.5

 h-1  ≤ 5

Add 1 to each side

h-1+1  ≤ 5+1

h  ≤ 6

We can only rent for 6 hours or less

You might be interested in
While driving to the store, your vehicle traveled 30 miles. While you we traveling, your vehicle traveled at an average speed of
Olenka [21]

Answer:

2 hours

Step-by-step explanation:

30 miles/x hours = 15 miles/1 hour

30 = 15x

x = 2 hours

7 0
3 years ago
Please help!!!
umka21 [38]

Can you make any shortcut for this question

4 0
3 years ago
Read 2 more answers
Suppose integral [4th root(1/cos^2x - 1)]/sin(2x) dx = A<br>What is the value of the A^2?<br><br>​
Alla [95]

\large \mathbb{PROBLEM:}

\begin{array}{l} \textsf{Suppose }\displaystyle \sf \int \dfrac{\sqrt[4]{\frac{1}{\cos^2 x} - 1}}{\sin 2x}\ dx = A \\ \\ \textsf{What is the value of }\sf A^2? \end{array}

\large \mathbb{SOLUTION:}

\!\!\small \begin{array}{l} \displaystyle \sf A = \int \dfrac{\sqrt[4]{\frac{1}{\cos^2 x} - 1}}{\sin 2x}\ dx \\ \\ \textsf{Simplifying} \\ \\ \displaystyle \sf A = \int \dfrac{\sqrt[4]{\sec^2 x - 1}}{\sin 2x}\ dx \\ \\ \displaystyle \sf A = \int \dfrac{\sqrt[4]{\tan^2 x}}{\sin 2x}\ dx \\ \\ \displaystyle \sf A = \int \dfrac{\sqrt{\tan x}}{\sin 2x}\ dx \\ \\ \displaystyle \sf A = \int \dfrac{\sqrt{\tan x}}{\sin 2x}\cdot \dfrac{\sqrt{\tan x}}{\sqrt{\tan x}}\ dx \\ \\ \displaystyle \sf A = \int \dfrac{\tan x}{\sin 2x\ \sqrt{\tan x}}\ dx \\ \\ \displaystyle \sf A = \int \dfrac{\dfrac{\sin x}{\cos x}}{2\sin x \cos x \sqrt{\tan x}}\ dx\:\:\because {\scriptsize \begin{cases}\:\sf \tan x = \frac{\sin x}{\cos x} \\ \: \sf \sin 2x = 2\sin x \cos x \end{cases}} \\ \\ \displaystyle \sf A = \int \dfrac{\dfrac{1}{\cos^2 x}}{2\sqrt{\tan x}}\ dx \\ \\ \displaystyle \sf A = \int \dfrac{\sec^2 x}{2\sqrt{\tan x}}\ dx, \quad\begin{aligned}\sf let\ u &=\sf \tan x \\ \sf du &=\sf \sec^2 x\ dx \end{aligned} \\ \\ \textsf{The integral becomes} \\ \\ \displaystyle \sf A = \dfrac{1}{2}\int \dfrac{du}{\sqrt{u}} \\ \\ \sf A= \dfrac{1}{2}\cdot \dfrac{u^{-\frac{1}{2} + 1}}{-\frac{1}{2} + 1} + C = \sqrt{u} + C \\ \\ \sf A = \sqrt{\tan x} + C\ or\ \sqrt{|\tan x|} + C\textsf{ for restricted} \\ \qquad\qquad\qquad\qquad\qquad\qquad\quad \textsf{values of x} \\ \\ \therefore \boxed{\sf A^2 = (\sqrt{|\tan x|} + c)^2} \end{array}

\boxed{ \tt   \red{C}arry  \: \red{ O}n \:  \red{L}earning}  \:  \underline{\tt{5/13/22}}

4 0
2 years ago
DOES ANYONE KNOW THIS?????
dedylja [7]

Answer:

if i;m right its 45 degrees

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
Help pleasssseeee......(do all pls)
Ugo [173]
16. 5x^3 y^-5 • 4xy^3
20x^4y^-2

20x^4 • 1/y^2

=20x^4/y^2

17. -2b^3c • 4b^2c^2
= -8b^5c^3

18. a^3n^7 / an^4 (a^3 minus a = a^2 same as n^7 minus n^4 = n^3)
=a^2n^3

19. -yz^5 / y^2z^3

= -z^2/y

20. -7x^5y^5z^4 / 21x^7y^5z^2 (divide -7 to 21 and minus xyz)

= -z / 3x^2

21. 9a^7b^5x^5 / 18a^5b^9c^3

=a^2c^2 / 2b^4

22. (n^5)^4

n ^5 x 4
=n^20

23. (z^3)^6
z ^3 x 6
=z^18
4 0
3 years ago
Read 2 more answers
Other questions:
  • The table represents the start of the division of -2x^3 + 11x^3 - 23x+20 by x^2 -3x + 4. Which terms belong in one of the shaded
    13·2 answers
  • Pleaseeee help!!! I will mark you as brainlinest for correct answer!!!!
    8·1 answer
  • Point C is located at (10, 3) and Point D is located at (4, 3). What is the horizontal distance between the two points? Explain.
    13·1 answer
  • If 10 custom engraved pens cost $100 how much will 8 of the same pens cost?
    6·2 answers
  • Solve for x: 3x+2y=5y+4
    6·1 answer
  • What is 9+10 plz show work <br> the right one will get brainly
    11·1 answer
  • Find the value for x
    14·1 answer
  • The bill for a pizza was $14.50 Charles paid for 3/5 Of the bill how much did he pay
    8·1 answer
  • in a triangle PQR, p=7.5cm, q=10cm, r=9.1cm. find the largest angle in the triangle using cosine rule.​
    12·1 answer
  • I need help with this question (3x56-7+76)/99=
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!