6 meters is left because you subtract 12 meters from 6
Answer:
The total amount of energy that would have been released if the asteroid hit earth = The kinetic energy of the asteroid = 1.29 × 10¹⁵ J = 1.29 PetaJoules = 1.29 PJ
1 PJ = 10¹⁵ J
Explanation:
Kinetic energy = mv²/2
velocity of the asteroid is given as 7.8 km/s = 7800 m/s
To obtain the mass, we get it from the specific gravity and diameter information given.
Density = specific gravity × 1000 = 3 × 1000 = 3000 kg/m³
But density = mass/volume
So, mass = density × volume.
Taking the informed assumption that the asteroid is a sphere,
Volume = 4πr³/3
Diameter = 30 m, r = D/2 = 15 m
Volume = 4π(15)³/3 = 14137.2 m³
Mass of the asteroid = density × volume = 3000 × 14137.2 = 42411501 kg = 4.24 × 10⁷ kg
Kinetic energy of the asteroid = mv²/2 = (4.24 × 10⁷)(7800²)/2 = 1.29 × 10¹⁵ J
Given :
A 120 kg box is on the verge of slipping down an inclined plane with an angle of inclination of 47º.
To Find :
The coefficient of static friction between the box and the plane.
Solution :
Vertical component of force :

Horizontal component of force(Normal reaction) :

Since, box is on the verge of slipping :

Therefore, the coefficient of static friction between the box and the plane is 1.07.
Hence, this is the required solution.
No they don't. Incident rays parallel to the axis of a concave mirror
reflect from the mirror's surface and converge at its focal point.
For a cylinder that has both ends open resonant frequency is given by the following formula:

Where n is the resonance node, v is the speed of sound in air and L is the length of a cylinder.
The fundamental frequency is simply the lowest resonant frequency.
We find it by plugging in n=1:

To find what harmonic has to be excited so that it resonates at f>20Hz we simply plug in f=20 Hz and find our n:

We can see that any resonant frequency is simply a multiple of a base frequency.
Let us find which harmonic resonates with the frequency 20 Hz:

Since n has to be an integer, final answer would be 323.