1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ycow [4]
4 years ago
15

If you are pushing on a crate on a frictionless surface in one direction, and your friend is pushing on the crate in the opposit

e direction with an equal amount of force. Which of the following statements is the most accurate? a. The crate will not move as the forces cancel each other out b. Because the surface is frictionless, the crate will always move regardless of who is pushing c. The crate can continue to move, but it will move at a constant velocity d. The net force is towards the direction that you are pushing, as you started the crate's motion
Physics
1 answer:
liberstina [14]4 years ago
3 0

Answer:

Its not A..

Explanation:

I chose A - was incorrect

You might be interested in
A simple pendulum consists of a mass M attached to a string oflength L andnegligible mass. For this system, when undergoing smal
PilotLPTM [1.2K]

The frequency of the pendulum is independent of the mass on the end. (c)

This means that it doesn't matter if you hang a piece of spaghetti or a school bus from the bottom end.  If there is no air resistance, and no friction at the top end, and the string has no mass, then the time it takes the pendulum to swing from one side to the other <u><em>only</em></u> depends on the <u><em>length</em></u> of the string.

8 0
3 years ago
Over a time interval of 1.99 years, the velocity of a planet orbiting a distant star reverses direction, changing from +20.7 km/
madam [21]

Answer:

(a) - 42700 m/s

(b) - 6.8 x 10^-4 m/s^2

Explanation:

initial velocity of star, u = 20.7 km/s

Final velocity of star, v = - 22 km/s

time, t = 1.99 years

Convert velocities into m/s and time into second

So, u = 20700 m / s

v = - 22000 m/s

t = 1.99 x 365.25 x 24 x 3600 = 62799624 second

(a) Change in planet's velocity = final velocity - initial velocity

  = - 22000 - 20700 = - 42700 m/s

(b) Accelerate is defined as the rate of change of velocity.

Acceleration = change in velocity / time

                     = ( - 42700 ) / (62799624) = - 6.8 x 10^-4 m/s^2

8 0
3 years ago
1. Calculati greutatea unui sac cu 5 kg de cartofi într-o zonă in care acceleratia gravitatională
harkovskaia [24]

Answer:

the weight is 49.1 N

Explanation:

The computation of the weight is shown below:

As we know that

= 5kg of potatoes × gravitational acceleration

= 5kg of potatoes × 9.82 m/s

= 49.1 N

Hence, the weight is 49.1 N

We simply applied the above formula in order to determine the weight

6 0
3 years ago
How could two waves on a rope interfere so the rope does not move at all?
coldgirl [10]

Answer:

If a crest formed by one wave interferes with a trough formed by the other wave then the rope will not move at all.

Explanation:

Assume a straight rope tied to both ends is at rest. When a wave is created at one end of the rope, it travels to the other end of the rope through formation of alternative crest and trough. Due to these crest and trough the rope shifts up and down.

But when there are two waves travelling through the rope and both have opposite direction (directed towards one another) in such a way that crest formed by one wave is interfering with the trough formed by the other wave then due to this interference the waves will cancel the effects of each other on the rope and rope will be stable.

5 0
3 years ago
In 1977 off the coast of Australia, the fastest speed by a vessel on the water
fenix001 [56]

Answer: 154.08 m/s

Explanation:

Average acceleration a_{ave} is the variation of velocity  \Delta V over a specified period of time  \Delta t:

a_{ave}=\frac{\Delta V}{\Delta t}}

Where:

a_{ave}=1.80 m/s^{2}

\Delta V=V_{f}-V_{o} being V_{o}=0 the initial velocity and V_{f} the final velocity

\Delta t=85.6 s

Then:

a_{ave}=\frac{V_{f}-V_{o}}{\Delta t}}

Since V_{o}=0:

a_{ave}=\frac{V_{f}}{\Delta t}}

Finding V_{f}:

V_{f}=a_{ave} \Delta t

V_{f}=(1.80 m/s^{2})(85.6 s)

Finally:

V_{f}=154.08 m/s

8 0
3 years ago
Other questions:
  • Two resistors of 5.0 and 9.0 ohms are connected inparallel. A
    12·1 answer
  • Find the potential energy of a 2kg ball 15m in the air
    9·1 answer
  • Suppose (for this statement only), that q is moved from the origin but is still within both the surfaces. The flux through both
    12·1 answer
  • ASAP<br> describe how energy is transferred in a mechanical wave
    6·1 answer
  • What kind of light would be the best to use to look inside a cold dark cloud and see the warm stars forming inside?
    9·1 answer
  • How many protons are in an atom of copper?
    7·2 answers
  • PLS HELP FOR PHYSICS PLS
    10·1 answer
  • What is the ability to complete extended periods of physical activity?
    5·2 answers
  • What is the energy equivalent of an object with a mass of 2.5 kg? 5.5 × 108 J 7.5 × 108 J 3.6 × 1016 J 2.25 × 1017 J
    6·2 answers
  • Is water wet?<br> I need an argument.
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!