Answer:
Transverse wave
Explanation:
Its because in transverse wave the particle displacement is perpendicular to the direction of wave propagation..hope it helps you...
9514 1404 393
Answer:
The front of the black car
Explanation:
The position -21 is shown on the diagram at the front of the white van. The reference point is the position 0, which is shown on the diagram as the front of the black car.
Answer:
Question 1)
a) The speed of the drums is increased from 2 ft/s to 4 ft/s in 4 s. From the below kinematic equations the acceleration of the drums can be determined.

This is the linear acceleration of the drums. Since the tape does not slip on the drums, by the rule of rolling without slipping,

where α is the angular acceleration.
In order to continue this question, the radius of the drums should be given.
Let us denote the radius of the drums as R, the angular acceleration of drum B is
α = 0.5/R.
b) The distance travelled by the drums can be found by the following kinematics formula:

One revolution is equal to the circumference of the drum. So, total number of revolutions is

Question 2)
a) In a rocket propulsion question, the acceleration of the rocket can be found by the following formula:

b) 
Answer:
71.8 N
Explanation:
T = Tension force in the strap
W = net work done = 752 J
f = force of friction = 8 N
d = displacement = 15 m
θ = angle between tension force and horizontal displacement = 36 deg
work done by frictional force is given as
W' = - f d
Work done by the tension force is given as
W'' = T d Cos36
Net work done is given as
W = W' + W''
W = T d Cos36 - f d
752 = T (15) Cos36 - (8) (15)
T = 71.8 N
Answer:
The point on the rim
Explanation:
All the points on the disk travels at the same angular speed
, since they cover the same angular displacement in the same time. Instead, the tangential speed of a point on the disk is given by

where
is the angular speed
r is the distance of the point from the centre of the disk
As we can see, the tangential speed is directly proportional to the distance from the centre: so the point on the rim, having a larger r than the point halway between the rim and the axis, will have a larger tangential speed, and therefore will travel a greater distance in a given time.