<span>Answer:
Total kinetic energy at the bottom = 0.5(1+0.4) mv^2 = mgh
V^2 = 7*9.8/0.7
V = 9.9m/s
ω = V/r = 9.9/1.7 = 5.8rad/s
Answer c. 5.8 rad/s</span>
Answer:
Sound is produced when an object vibrates, creating a pressure wave.
Explanation:
This pressure wave causes particles in the surrounding medium (air, water, or solid) to have vibrational motion. ... The human ear detects sound waves when vibrating air particles vibrate small parts within the ear.
I believe that the answer is C. Hope this Helps:)))
Answer:
0.3 m
Explanation:
Initially, the package has both gravitational potential energy and kinetic energy. The spring has elastic energy. After the package is brought to rest, all the energy is stored in the spring.
Initial energy = final energy
mgh + ½ mv² + ½ kx₁² = ½ kx₂²
Given:
m = 50 kg
g = 9.8 m/s²
h = 8 sin 20º m
v = 2 m/s
k = 30000 N/m
x₁ = 0.05 m
(50)(9.8)(8 sin 20) + ½ (50)(2)² + ½ (30000)(0.05)² = ½ (30000)x₂²
x₂ ≈ 0.314 m
So the spring is compressed 0.314 m from it's natural length. However, we're asked to find the additional deformation from the original 50mm.
x₂ − x₁
0.314 m − 0.05 m
0.264 m
Rounding to 1 sig-fig, the spring is compressed an additional 0.3 meters.
Answer:
Having the inside dimensions (ID) and the outside dimensions (OD) will allow you to figure out the wall thickness on tubing. You would need to subtract the ID from the OD and then divide by two. This number is the wall thickness.
Explanation: