Answer:

Explanation:
Given that,
The instantaneous current in the circuit is giveen by :

We need to find the rms value of the current.
The general equation of current is given by :

It means, 
We know that,

So, the rms value of current is 2.12 A.
Explanation:
The answer is in the pic above
Answer:
23.0 s
Explanation:
Given:
v₀ = 0 m/s
v = 19.8 m/s
a = 4.80 m/s²
Find: Δx and t
v² = v₀² + 2aΔx
(19.8 m/s)² = (0 m/s)² + 2 (4.80 m/s²) Δx
Δx = 40.84 m
v = at + v₀
19.8 m/s = (4.80 m/s²) t + 0 m/s
t = 4.125 s
The elevator takes 40.84 m and 4.125 s to accelerate, and therefore also 40.84 m and 4.125 s to decelerate.
That leaves 291.3 m to travel at top speed. The time it takes is:
291.3 m / (19.8 m/s) = 14.71 s
The total time is 4.125 s + 14.71 s + 4.125 s = 23.0 s.
Answer:
A measured force of (46.5 0.8 N ) would not be in agreement with a theoretically calculated force of (48.4 0.6 N )
Explanation:
From the question we are told that
Measured force is ![F_M = [46.5 \pm 0.8 \ N ]](https://tex.z-dn.net/?f=F_M%20%20%3D%20%20%5B46.5%20%5Cpm%200.8%20%5C%20%20N%20%5D)
Calculated force is ![F_c = [48.4 \pm 0.6 \ N ]](https://tex.z-dn.net/?f=F_c%20%3D%20%20%5B48.4%20%5Cpm%200.6%20%5C%20%20N%20%5D)
Generally the measured force in interval form is

=> 
Generally the calculated force in interval form is

=> 
Generally looking both interval we see that they do not intersect at any point Hence
A measured force of (46.5 0.8 N ) would not be in agreement with a theoretically calculated force of (48.4 0.6 N )