Answer:
What element is this. Would you mind inserting a picture or naming the element in the comments section
1. NaF, Na₂S, Na₃P, Na₂O
2. MgF₂, MgS, Mg₃P₂, MgO
3. AlF₃, Al₂S₃, AlP, Al₂O₃
<h3>Further explanation</h3>
Given
Ionic charge
Required
The formula of binary ionic compounds
Solution
Ionic compounds consisting of cations (ions +) and anions (ions -)
Ionic compounds usually consist of metal cations and non-metal anions
Metal: cation, positively charged.
Nonmetal: negatively charged
The anion cation's charge is crossed
The ionic compounds :
1. NaF, Na₂S, Na₃P, Na₂O
2. MgF₂, MgS, Mg₃P₂, MgO
3. AlF₃, Al₂S₃, AlP, Al₂O₃
Answer:
Heat or Thermal energy, Solar Energy, Chemical energy, electrical energy, mechanical energy
Explanation:
The volume of the 0.15 M LiOH solution required to react with 50 mL of 0.4 M HCOOH to the equivalence point is 133.3 mL
<h3>Balanced equation </h3>
HCOOH + LiOH —> HCOOLi + H₂O
From the balanced equation above,
The mole ratio of the acid, HCOOH (nA) = 1
The mole ratio of the base, LiOH (nB) = 1
<h3>How to determine the volume of LiOH </h3>
- Molarity of acid, HCOOH (Ma) = 0.4 M
- Volume of acid, HCOOH (Va) = 50 mL
- Molarity of base, LiOH (Mb) = 0.15 M
- Volume of base, LiOH (Vb) =?
MaVa / MbVb = nA / nB
(0.4 × 50) / (0.15 × Vb) = 1
20 / (0.15 × Vb) = 1
Cross multiply
0.15 × Vb = 20
Divide both side by 0.15
Vb = 20 / 0.15
Vb = 133.3 mL
Thus, the volume of the LiOH solution needed is 133.3 mL
Learn more about titration:
brainly.com/question/14356286
<h3><u>Answer</u>;</h3>
1.0875 x 10-2 atm
<h3><u>Explanation;</u></h3>
2O3(g) → 3O2(g)
rate = -(1/2)∆[O3]/∆t = +(1/3)∆[O2)/∆t
The average rate of disappearance of ozone ... is found to
be 7.25 × 10–3 atm over a certain interval of time.
This means (ignoring time)
∆[O3]/∆t = -7.25 × 10^–3 atm
(it is disappearing, thus the negative sign)
rate = -(1/2)∆[O3]/∆t
rate = -(1/2)*(-7.25 × 10^–3 atm)
= 3.625 × 10^–3 atm
Now use the other part of the expression:
rate = +(1/3)∆[O2)∆t
3.625 × 10–3 atm = +(1/3)∆[O2)/t
∆[O2)/∆t = (3)*(3.625× 10^–3 atm)
= 1.0875 x 10-2 atm over the same time interval