<span>i think its Uranium Dating </span>
Considering the definition of pOH and strong base, the pOH of the aqueous solution is 1.14
The pOH (or potential OH) is a measure of the basicity or alkalinity of a solution and indicates the concentration of ion hydroxide (OH-).
pOH is expressed as the logarithm of the concentration of OH⁻ ions, with the sign changed:
pOH= - log [OH⁻]
On the other hand, a strong base is that base that in an aqueous solution completely dissociates between the cation and OH-.
LiOH is a strong base, so the concentration of the hydroxide will be equal to the concentration of OH-. This is:
[LiOH]= [OH-]= 0.073 M
Replacing in the definition of pOH:
pOH= -log (0.073 M)
<u><em>pOH= 1.14 </em></u>
In summary, the pOH of the aqueous solution is 1.14
Learn more:
Answer:
plz i need to ask another question i hope u understand
Explanation:
Answer:
%age Yield = 51.45 %
Solution:
Step 1: Convert Kg into g
68.5 Kg CO = 68500 g CO
8.60 Kg H₂ = 8600 g
Step 2: Find out Limiting reactant;
The Balance Chemical Equation is as follow;
CO + 2 H₂ → CH₃OH
According to Equation,
28 g (1 mol) CO reacts with = 4 g (2 mol) of H₂
So,
68500 g CO will react with = X g of H₂
Solving for X,
X = (68500 g × 4 g) ÷ 28 g
X = 9785 g of H₂
It shows 9785 g H₂ is required to react with 68500 g of CO but we are provided with 8600 g of H₂ which is less than required. Therefore, H₂ is provided in less amount hence, it is a Limiting reagent and will control the yield of products.
Step 3: Calculate Theoretical Yield
According to equation,
4 g (2 mol) H₂ reacts to produce = 32 g (1 mol) Methanol
So,
8600 g H₂ will produce = X g of CH₃OH
Solving for X,
X = (8600 g × 32 g) ÷ 4 g
X = 68800 g of CH₃OH
Step 4: Calculate %age Yield
%age Yield = Actual Yield ÷ Theoretical Yield × 100
Putting Values,
%age Yield = 3.54 × 10⁴ g ÷ 68800 g × 100
%age Yield = 51.45 %
Answer:
Water transports important nutrients throughout the plant.
Explanation:
Much like blood in an animal, water is necessary for a plants survival, as it transports important nutrients from the soil all through the plant's stems and leaves.