Region 1 is solid state, 2 is liquid state and 3 is gaseous state. Using this fact, the correct statement is that, the particle are more orderly in region 1, which is the solid state. The other statements are false.
Answer:
15 moles.
Explanation:
Hello,
In this case, the undergoing chemical reaction is:

Clearly, since carbon and oxygen are in a 1:1 molar ratio, 15 moles of carbon will completely react with 15 moles of oxygen, therefore 15 moles of oxygen remain as leftovers. In such a way, since carbon and carbon dioxide are also in a 1:1 molar ratio, the theoretical yield of carbon dioxide is 15 moles based on the stoichiometry:

Best regards.
Answer:

Explanation:
There are two ways of looking at this problem. The first way, slightly more advanced, is to understand that the carbocation formed is an intermediate in this reaction: it is formed in one step and consumed in the subsequent step.
Secondly, we have hydroxide involved as our reactant, so it should be our second reactant in the second bimolecular step.
Thirdly, the product formed would be a combination of the anion and cation, one of our products, this means we have the following second step:

Another way is to verify this knowing that by adding all of the steps should yield a net equation, notice if we add the two steps together (reactants on one side and products on the other), we obtain:

Notice that the intermediate carbocation cancels out on both sides to yield the final net equation:

This means we have the correct second step.