Search it up a lot of information should appear. Try that
<span>Answer D. Spray from the hose suggests water in liquid state falling into the soil. The process of elimination: A glacier can be related to water in frozen but in static state. B Fast winds has the element of movement of air, not water. C. A hail storm, movement of water in frozen state. D. Heavy rains looks to be better choice compares to the others.</span>
I believe the answer is C. The bonds in the compound magnesium sulfate is ionic and covalent. Magnesium sulfate is soluble in water. When the said compound is dissolved in water, it dissociates into magnesium ions and sulfate ions. However, the bonds that held together the sulfate ions is covalent.
She will most likely observe that the temperature
does not change during melting because the heat absorbed is used to overcome
intermolecular forces rather than to increase the kinetic energy of the
particles if she measures the temperature of the water in the beaker.
The mass of Calcium required to complete this reaction is 4.008 g.
- Law of conservation of mass states that In a closed system, mass cannot be produced or destroyed, but it can be changed from one form to another.
- The mass of the chemical constituents before a chemical reaction is equal to the mass of the constituents after the reaction.
- In several disciplines, including chemistry, mechanics, and fluid dynamics, the idea of mass conservation is widely applied.
In the given reaction mass of product after completion of reaction is 13.614 g that means total mass of constituents before reaction should also be 13.614.
So,
mass of Ca + mass of O₂ + mass of S = mass of CaSO4
Ca + 6.400 g + 3.206 g = 13.614 g
mass of Ca = 13.614 - 9.606 = 4.008 g
Therefore, by law of conservation of mass 4.008 g of Ca is required for the completion of the reaction.
Learn more about mass conservation here:
brainly.com/question/2030891
#SPJ9