Answer:
pH = 10.75
Explanation:
To solve this problem, we must find the molarity of [OH⁻]. With the molarity we can find the pOH = -log[OH⁻]
Using the equation:
pH = 14 - pOH
We can find the pH of the solution.
The molarity of Ca(OH)₂ is 2.8x10⁻⁴M, as there are 2 moles of OH⁻ in 1 mole of Ca(OH)₂, the molarity of [OH⁻] is 2*2.8x10⁻⁴M = 5.6x10⁻⁴M
pOH is
pOH = -log 5.6x10⁻⁴M
pOH = 3.25
pH = 14-pOH
<h3>pH = 10.75</h3>
<span>the balanced chemical equation for the reaction is as follows;
C</span>₃H₈ + 5O₂ ---> 3CO₂ + 4H₂<span>O
stoichiometry of </span> C₃H₈ to O₂ is 1:5
number of moles of C₃H₈ reacted - 0.025 g / 44.1 g/mol = 0.000567 mol according to molar ratio of 1:5
number of O₂ moles required are 5 times the amount of C₃H₈ moles reacted therefore number of O₂ moles required - 0.000567 x 5 = 0.00284 mol .
mass of O₂ required - 0.00284 mol x 32.00 g/mol = 0.091 mol .
answer is 0.091 mol
It is A I took it befor hope this helps:)