Answer:
Keq for this reaction is 6.94x10⁻³
Explanation:
The equilibrium equation is this one:
N₂O₄ (g) ⇄ 2NO₂ (g)
Initially we have 0.03 moles from the dinitrogen tetroxide and nothing from the dioxide.
In the reaction, some amount of compound (x) has reacted.
As ratio is 1:2, we have double x in products.
Finally in equilibrium we have:
N₂O₄ (g) ⇄ 2NO₂ (g)
0.03 - x 2x
And we know [N₂O₄] in equilibrium so:
0.03 - x = 0.0236
x = 0.03 - 0.0236 → 6.4x10⁻³
As this is the amount that has reacted, in equilibrium I have produced:
6.4x10⁻³ .2 = 0.0128 moles of NO₂
This is the expression for K,
[NO₂] ² / [N₂O₄]
0.0128² / 0.0236 = 6.94x10⁻³
Here is the answer. Although its chief uses are in the preparation of sulfuric acid, sulfur trioxide, and sulfites, sulfur dioxide also is used as a disinfectant, a refrigerant, a reducing agent, a bleach, and a food preservative, especially in dried fruits.
<h3>1.Option B</h3><h3>Elements can be defined as pure substances that are made up of only single type of atom. </h3>
<h2>Note:</h2>
- Single type of atom not single atom
<h3>2.Option B </h3><h3>Aluminum foil is correct because heterogenous mixtures are uniform throughout the mixture. and foil is uniform but other option given are not uniform.</h3>
Answer:
- Initial: forward rate > reverse rate
- Equilibrium: forward rate = reverse rate
Explanation:
2NO₂(g) → N₂O₄(g) Kc=4.7
The definition of <em>equilibrium</em> is when the forward rate and the reverse rate are <em>equal</em>.
Because in the initial state there's only NO₂, there's no possibility for the reverse reaction (from N₂O₄ to NO₂). Thus the forward rate will be larger than the reverse rate.