Answer:
M = 1.04 M
Explanation:
Given data
Molarity of solution = ?
Mass of HCl = 6.27 g
Volume of solution = 163 mL (163 mL× 1L /1000 mL = 0.163 L)
Solution:
Molarity is used to describe the concentration of solution. It tells how many moles are dissolve in per litter of solution.
Formula:
Molarity = number of moles of solute / L of solution
Number of moles of HCl:
Number of moles = mass/molar mass
Number of moles = 6.27 g / 36.5 g/mol
Number of moles = 0.17 mol
Molarity:
M = 0.17 mol/ 0.163 L
M = 1.04 M
Maybe they had to consider the habitat to make sure the habitat they were releasing the dragonflies into would be appropriate for the dragonflies.
If you're looking for "what rocks are formed by changes..." it's Igneous Rocks.
A 250 ml sample of saturated a g o h solution was titrated with h c l , and the endpoint was reached after 2. 60 ml of 0. 0136 m h c l was dispensed. Based on this titration, what is the k s p of a g o h <u>. Ksp=1.9×10⁻⁸</u>
<h3>What is titration?</h3>
Titration is a typical laboratory technique for quantitative chemical analysis used to calculate the concentration of a specified analyte. It is also referred to as titrimetry and volumetric analysis (a substance to be analyzed). A standard solution with a known concentration and volume is prepared as the reagent, also known as the titrant or titrator. To ascertain the concentration of the analyte, the titrant reacts with an analyte solution (also known as the titrand). The titration volume is the amount of titrant that interacted with the analyte.
A typical titration starts with a beaker or Erlenmeyer flask being placed below a calibrated burette or chemical pipetting syringe that contains the titrant and a little amount of the indicator (such as phenolphthalein).
To learn more about titration from the given link:
brainly.com/question/186765
#SPJ4
Answer:
Explanation:
<u>1) Data:</u>
a) V = 93.90 ml
b) T = 28°C
c) P₁ = 744 mmHg
d) P₂ = 28.25 mmHg
d) n = ?
<u>2) Conversion of units</u>
a) V = 93.90 ml × 1.000 liter / 1,000 ml = 0.09390 liter
b) T = 28°C = 28 + 273.15 K = 301.15 K
c) P₁ = 744 mmHg × 1 atm / 760 mmHg = 0.9789 atm
d) P₂ = 28.5 mmHg × 1 atm / 760 mmHg = 0.0375 atm
<u>3) Chemical principles and formulae</u>
a) The total pressure of a mixture of gases is equal to the sum of the partial pressures of each gas. Hence, the partical pressure of the hydrogen gas collected is equal to the total pressure less the vapor pressure of water.
b) Ideal gas equation: pV = nRT
<u>4) Solution:</u>
a) Partial pressure of hydrogen gas: 0.9789 atm - 0.0375 atm = 0.9414 atm
b) Moles of hygrogen gas:
pV = nRT ⇒ n = pV / (RT) =
n = (0.9414 atm × 0.09390 liter) / (0.0821 atm-liter /K-mol × 301.15K) =
n = 0.00358 mol (which is rounded to 3 significant figures) ← answer