<span>The atomic weight of 13C should be pretty close to 13.0. (If you have the exact mass, use it in the problem.) So,
9.00 g / 13.0 g/mol = 0.692 moles
Therefore, the answer should be 0.692 moles are in 9.00 g of 13C.</span>
The question is incomplete. The complete question is:
Calcium Carbide (CaC₂) is an unusual substance that contains a carbon anion (C₂²⁻). The reaction with water involves several steps that occur in rapid succession. CaC2 is a salt (notice that its name is similar to sodium chloride). When a salt dissolves in water, ions leave the crystal lattice and enter the aqueous (aq) solution. Write the relevant balanced chemical equation for the dissolution of CaC₂, in water.
Answer:
CaC₂(s) + 2H₂O(l) → Ca(OH)₂(aq) + C₂H₂(aq)
Explanation:
When a salt dissolves in water, it dissociates in its ions. In the Calcium Carbide, the cation is Ca⁺² and the anion is C₂²⁻, so the reaction is:
CaC₂(s) + 2H₂O(l) → Ca(OH)₂(aq) + C₂H₂(aq)
The base Ca(OH)₂ is soluble, so it will dissociate at Ca⁺ and OH⁻, but the C₂H₂ is stable and doesn't dissociate in the solution.
Answer:
go look for that on google
Explanation:
Answer:
K8S4O16 or K8(SO4)4 depending on if the SO4 is supposed to represent sulfate or not
Explanation:
Find the molar mass of K2SO4 first:
2K + S + 4O ≈ 174 g/mol
Divide the goal molar mass of 696 by the molar mass of the empirical formula:
696 / 174 = 4
This means you need to multiply everything in the empirical formula by 4:
K2SO4 --> K8S4O16 or K8(SO4)4 depending on if the SO4 is for sulfate or not
Answer:
friend me on here and imma send you the link Explanation: