If you'd graph this function, you'd see that it's positive on [-1.5,0], and that it's possible to inscribe 3 rectangles on the intervals [-1.5,-1), (-1,-0.5), (-0.5, 1].
The width of each rect. is 1/2.
The heights of the 3 inscribed rect. are {-2.25+6, -1+6, -.25+6} = {3.75,5,5.75}.
The areas of these 3 inscribed rect. are (1/2)*{3.75,5,5.75}, which come out to:
{1.875, 2.5, 2.875}
Add these three areas together; you sum will represent the approx. area under the given curve on the given interval: 1.875+2.5+2.875 = ?
12b-15>21
+15 +15
12b > 36
----- ----
12 12
b = 3
Answer: first option 3, - 7
Justification:
1) Given expression:9x² - 5x - 7
2) Each monomial is a term.
The monomials are each combination of numbers and letters (coefficient, letters and exponents) separated of other monomials (terms) with a + or - operator.
3) Therefore, there are 3 terms which are:
9x²,
-5x, and
-7.
The polynomials with 3 terms are called monomials.
4) The monomial (term) withoud letter is the constant. In this case that is -7.
Answer:
256 m and 3840 m²
Step-by-step explanation:
The 3 part of the ratio represents 48 m , then
48m ÷ 3 = 16 m ← value of 1 part of the ratio, so
5 parts = 5 × 16 m = 80 m
Then breadth = 48 m and length = 80 m
perimeter = 2l + 2b = 2(80) + 2(48) = 160 + 96 = 256 m
area = lb = 80 × 48 = 3840 m²
Reflection, across the y axis