(a) When the circle is offset from the origin, the equation for the radius gets messy. In general, it will be the root of a quadratic equation in sine and cosine, not easily simplified. The Cartesian equation is easier to write.
Circle centered at (h, k) with radius r:
(x -h)^2 +(y -k)^2 = r^2
The given circle is ...
(x -2)^2 +(y -2)^2 = 16
__
(b) When the circle is centered at the origin, the radius is a constant. The desired circle is most easily written in polar coordinates:
Greatest common factor is 6. If you use the distributive property then the answer would be 6(4) + 6(6) or 6(4+6). Then you distribute the 6 to each digit and should get 24+36.