Answer: 8x + 4
Step-by-step explanation:
Answer:
A quadrilateral is a rectangle
Answer:
respeto máximo
Step-by-step explanation:
82 de IQ soy matemático
esto es todo lo que hay el pana viste de Gucci
ahora soy héroe nacional y antes me llamaba banpuzi
escribo algo hoy y al siguiente ya no mola
Answer:
-23
Step-by-step explanation:
Answer:
Verified
Step-by-step explanation:
Let the 2x2 matrix A be in the form of:
![\left[\begin{array}{cc}a&b\\c&d\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%26b%5C%5Cc%26d%5Cend%7Barray%7D%5Cright%5D)
Where det(A) = ad - bc # 0 so A is nonsingular:
Then the transposed version of A is
![A^T = \left[\begin{array}{cc}a&c\\b&d\end{array}\right]](https://tex.z-dn.net/?f=A%5ET%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%26c%5C%5Cb%26d%5Cend%7Barray%7D%5Cright%5D)
Then the inverted version of transposed A is
![(A^T)^{-1} = \frac{1}{ad - cb} \left[\begin{array}{cc}a&-c\\-b&d\end{array}\right]](https://tex.z-dn.net/?f=%28A%5ET%29%5E%7B-1%7D%20%3D%20%5Cfrac%7B1%7D%7Bad%20-%20cb%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%26-c%5C%5C-b%26d%5Cend%7Barray%7D%5Cright%5D)
The inverted version of A is:
![A^{-1} = \frac{1}{ad - bc}\left[\begin{array}{cc}a&-b\\-c&d\end{array}\right]](https://tex.z-dn.net/?f=A%5E%7B-1%7D%20%3D%20%5Cfrac%7B1%7D%7Bad%20-%20bc%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%26-b%5C%5C-c%26d%5Cend%7Barray%7D%5Cright%5D)
The transposed version of inverted A is:
![(A^{-1})^T = \frac{1}{ad - bc}\left[\begin{array}{cc}a&-c\\-b&d\end{array}\right]](https://tex.z-dn.net/?f=%28A%5E%7B-1%7D%29%5ET%20%3D%20%5Cfrac%7B1%7D%7Bad%20-%20bc%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%26-c%5C%5C-b%26d%5Cend%7Barray%7D%5Cright%5D)
We can see that
![(A^T)^{-1} = (A^{-1})^T](https://tex.z-dn.net/?f=%20%28A%5ET%29%5E%7B-1%7D%20%3D%20%28A%5E%7B-1%7D%29%5ET)
So this theorem is true for 2 x 2 matrices