Resonance, leaving group, carbonyl carbon delta+, and steric effect is the most crucial variables that affect the relative reactivity of a functional group containing a carbonyl in an addition or substitution process.
Discussion:
1. Carbonyl Carbon Delta+: The carbonyl group becomes more electrophilic and accelerates nucleophilic assault when the carbonyl carbon delta+ is bigger.
2. Resonance: When the carbonyl is transformed into the tetrahedral adduct, it may be lost. Loss of resonance increases the energy of the transition state for this nucleophilic assault because resonance has the function of stabilizing. Therefore, a carbonyl functional group's resistance to nucleophilic attack increases as resonance in the group increases in importance.
3. Leaving group: Tetrahedral adduct fragmentation is encouraged by a better LG.
4. Steric effects: The nucleophilic attack on carbonyl carbon is delayed when sterically impeded.
Learn more about carbonyl here:
brainly.com/question/21440134
#SPJ4
I’ll do the first two for you.
Answer:
Yes
Explanation:
A molecule has a center of symmetry when, for any atom in the molecule, an identical atom exists diametrically opposite this center an equal distance from it(Wikipedia).
A center of symmetry is said to exist in a molecule when reflection of all parts of the molecule through the center of symmetry produces an indistinguishable configuration(Housecroeft and Sharpe,2012)
Obviously, the Cl2 molecule has a center of symmetry, hence it is symmetrical. Reflection of the molecules through its center of symmetry produces an indistinguishable configuration.