Answer:
3947.6 N
Explanation:
Centripetal Force: This is the force that tend to moves a body towards the center of a circle during circular motion.
The formula for centripetal force is
F = mω²r ........................ Equation 1
Where F = Centripetal force, ω = angular velocity, r = radius.
Where π = 3.1415
Given: m = 4 kg, ω = 0.5 rev/s = (0.5×2π) rad/s = 3.1415 rad/s, r = 100 m.
Substitute into equation 1
F = 4(3.1415)²(100)
F = 3947.6 N
Hence the centripetal force on the turbine blade = 3947.6 N
At any crime scene, the two greatest challenges to the physical evidence are contamination and loss of continuity.
<h3>What is the meaning of physical evidence?</h3>
In evidence law, physical evidence (also called real evidence or material evidence) is any material object that plays some role in the matter that gave rise to the litigation, introduced as evidence in a judicial proceeding (such as a trial) to prove a fact in issue based on the object's physical characteristics.
The two types of evidence at crime scenes:
Biological evidence (e.g., blood, body fluids, hair and other tissues)
Latent print evidence (e.g., fingerprints, palm prints, footprints)
The biggest impediment to an investigation is the removal or loss of a piece of evidence from the scene of a crime.
Hence, at any crime scene, the two greatest challenges to the physical evidence are contamination and loss of continuity.
Learn more about the physical evidence here:
brainly.com/question/13505766
#SPJ1
Answer:
Power of the string wave will be equal to 5.464 watt
Explanation:
We have given mass per unit length is 0.050 kg/m
Tension in the string T = 60 N
Amplitude of the wave A = 5 cm = 0.05 m
Frequency f = 8 Hz
So angular frequency 
Velocity of the string wave is equal to 
Power of wave propagation is equal to 
So power of the wave will be equal to 5.464 watt
Answer:
B. False
Explanation:
Not all objects near the earths surface - regardless of size and weight - have the same force of gravity on them.
Explanation:
They will repel, meaning that they are made of an electrical conductor.