Answer:
This question is incomplete
Explanation:
This question is incomplete. However, the formula to be used here is
ω = 2π/T
Where ω is the angular frequency (in rad/s)
T is the period - the time taken for Block A to complete one oscillation and return to it's original position.
To solve for this period T, the formula below should be used
T = 2π√m/k
where m is the mass of the object (Block A) and k is the spring constant (281 J/m²)
Answer:
https://www.slader.com/discussion/question/an-electron-is-accelerated-through-240-times-103-v-from-rest-and-then-enters-a-uniform-170-t-magnetic-field-what-are-a-the-maximum-and-b-the-9e425fbd/
( Here is solution)
Answer:
26036485.6433 W/m²
Explanation:
E= Energy = 470 J
t = Time = 4 seconds
d = Diameter = 2.6 mm
Power is given by

Intensity is given by

The intensity of the laser beam is 26036485.6433 W/m²
Answer:

Explanation:
We need only to apply the definition of acceleration, which is:

In our case the final velocity is
, the initial velocity is
since it departs from rest, the final time is
and the initial time we are considering is 
So for our values we have:
