<span>D is at rest at the top of a 2 m high slope. The sled has a mass of 45 kg. The sled's potential energy is J?
</span>Answer: The sled's potential energy is 882 Joules
The electrostatic force between two charges q1 and q2 is given by

where

is the Coulomb's constant and r is the distance between the two charges.
If we use F=19.2 N and q1=q2=-3.0 C, we can find the value of r, the distance between the two charges by re-arranging the previous formula:
The acceleration of the object which moves from an initial step to a full halt given the distance traveled can be calculated through the equation,
d = v² / 2a
where d is distance, v is the velocity, and a is acceleration
Substituting the known values,
180 = (22.2 m/s)² / 2(a)
The value of a is equal to 1.369 m/s²
The force needed for the object to be stopped is equal to the product of the mass and the acceleration.
F = (1300 kg)(1.369 m/s²)
F = 1779.7 N
Answer:
How does a Van de Graaff generator works?
A Van de Graaff generator pulls electrons from the Earth, moves them along a belt and stores them on the large sphere. These electrons repel each other and try to get as far away from each other as possible, spreading out on the surface of the sphere. ... It provides a convenient path for electrons to move to the ground.
source-
scienceworld.ca