Answer:
The appropriate probability model for X is a Binomial distribution,
X
Bin (<em>n</em> = 5, <em>p</em> = 1/33).
Step-by-step explanation:
The random variable <em>X</em> can be defined as the number of American births resulting in a defect.
The proportion of American births that result in a birth defect is approximately <em>p</em> = 1/33.
A random sample of <em>n</em> = 5 American births are selected.
It is assumed that the births are independent, i.e. a birth can be defective or not is independent of the other births.
In this experiment the success is defined as a defective birth.
The random variable <em>X</em> satisfies all criteria of a Binomial distribution.
The criteria are:
- Number of observations is constant
- Independent trials
- Each trial has only two outcomes: Success and Failure
- Same probability of success for each trial
Thus, the appropriate probability model for X is a Binomial distribution, Bin (<em>n</em> = 5, <em>p</em> = 1/33).
Answer:
c may be the correct one l am 55% sure
Using the z-distribution, it is found that:
- The 95% confidence interval is of -1.38 to 1.38.
- The value of the sample mean difference is of 1.74, which falls outside the 95% confidence interval.
<h3>What is the z-distribution confidence interval?</h3>
The confidence interval is:

In which:
is the difference between the population means.
In this problem, we have a 95% confidence level, hence
, z is the value of Z that has a p-value of
, so the critical value is z = 1.96.
The estimate and the standard error are given by:

Hence the bounds of the interval are given by:


1.74 is outside the interval, hence:
- The 95% confidence interval is of -1.38 to 1.38.
- The value of the sample mean difference is of 1.74, which falls outside the 95% confidence interval.
More can be learned about the z-distribution at brainly.com/question/25890103
#SPJ2
Answer:
k(-7) = = -89
Step-by-step explanation:
k(t) = 10t -19
Let t = -7
k(-7) = 10*-7 -19
= -70-19
= -89