Answer:
Explanation:
We know that , for an object to remain in circular motion , a force towards centre is required which is called centripetal force. In the circular motion of
satellites around planet , this force is provided by the gravitational attraction between satellite and planet.
If M be the mass of planet and m be the mass of satellite, G be gravitational constant and R be the distance between planet and satellite or R be the radius of orbit
Gravitational force = G Mm / R²
If v be the velocity with which satellite is orbiting
centripetal force
= m v² /R
Centripetal force = gravitational attraction
m v² /R = G Mm / R²
v = 
Time period = time the satellite takes to make one rotation
= distance / orbital velocity
= 2πR/ v
= 
T = 
Answer:
Explanation:
Let fuel is released at the rate of dm / dt where m is mass of the fuel
thrust created on rocket
= d ( mv ) / dt
= v dm / dt
this is equal to force created on the rocket
= 220 dv / dt
so applying newton's law
v dm / dt = 220 dv / dt
v dm = 220 dv
dv / v = dm / 220
integrating on both sides
∫ dv / v = ∫ dm / 220
lnv = ( m₂ - m₁ ) / 220
ln4000 - ln 2500 = ( m₂ - m₁ ) / 220
( m₂ - m₁ ) = 220 x ( ln4000 - ln 2500 )
( m₂ - m₁ ) = 220 x ( 8.29 - 7.82 )
= 103.4 kg .
Answer:
The force will be zero
Explanation:
Due to the symmetric location of the +2μC charges the forces the excert over the +5μC charge will cancel each other resulting in a net force with a magnitude of zero.However in this case it would be an unstable equilibrium, very vulnerable to a kind of bucking. If the central charge is not perfectly centered on the vertical axis the forces will have components in that axis that will add together instead of canceling each other.
Answer:
0.75 g/cm^3
Explanation:
The formula for density:

Where m is the mass and V is the volume.
So, we can substitute values for m and V:

Therefore, the density is 0.75 g/cm^3 (watch the units!)