The blank in the question can be filled with the word, “Graph”. Therefore, Graphs are the pictures which are in relationships.
<u>Explanation:
</u>
Graph usually represents a set of data which is nonlinear in occurrence and has some relationship between the two given data. And as graph are pictorial representation, it is simply assumed as the pictures of relationships.
For example, a graph can be drawn for the set of data for the presence of number of students of all the sections of the particular class of a school, as they are relative. But making the graph for number of students in all section of all class but different school cannot be done as non-relative.
Answer:
33,02 lb
Explanation:
g_m ≈ 1,62 m/s2
g ≈ 9,81 m/s2
m = 200 lb
m_m = m * g_m / m = 200 * 1,62 / 9,81 = 33,02 lb
Answer:
In chemistry, a nonmetal (or non-metal) is a chemical element that mostly lacks the characteristics of a metal. Physically, a nonmetal tends to have a relatively low melting point, boiling point, and density. ... Metalloids such as boron, silicon, and germanium are sometimes counted as nonmetals
Explanation:
Answer:
•Most of the components that make up curcuits are conductors. Electricity flows easily thought conductors such as metal or water.Electricity does not flow easily thought insulators such as wood or rubber.
•When a battery is used to power a circuit, the circuit the current must travel from one pole of the battery to the opposite battery.
•Resisotors show the flow of Electricity throught a circuit this can prevent components of the circuit from 'brning out'. In a curcuit diagram, resistors are represented by bending lines.
Explanation:
Answer: E/4 ( one - fourth of it electric field)
Explanation:
The electric field of a point charge is given below as
E =kq/r²
E = electric field,
K = electric constant
q = magnitude of electric charge
r = distance between point charge and electric field.
It can be seen that only E and r are the only variable here and also, E is inversely proportional to r²
Which implies that
E = k/r² , k = E × r²
E1 ×(r1)² = E2 × (r2)²
Let E1 = E, r1 =1, r2 = 2 and E2 =?
Let us substitute the parameters
E × 1 = E2 × 2²
E × 1 = E2 × 4
E = E2 × 4
E2 = E/4
Which implies that the electric field at the second distance (r =4) is one fourth of the initial electric field.