1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
erik [133]
3 years ago
14

What is the mass of a baseball that has a kinetic energy of 100 J and travel at 5 m/s

Physics
2 answers:
djyliett [7]3 years ago
8 0
Mass = kinetic energy * 2 / velocity^2

=> mass=  100 * 2 / 5^2

= 200 / 25 = 8 kg

in short , your answer is 8 kg
serious [3.7K]3 years ago
4 0
K.E= 1/2 mv²
So, m= K..E*2/v²
∴ m= 100 *2/ 25
m=8 Js²/m
As, the unit of K.E and velocities are in SI so unit of mass would also be in SI i.e, kg
So, m=8 kg
You might be interested in
1.)Two objects, one of m=20,000 kg, and another of 12,500 kg, are placed at a distance of 5 meters apart. What is the force of g
Delvig [45]

1) 6.67\cdot 10^{-4} N

The force of gravitation between the two objects is given by:

F=G\frac{m_1 m_2}{r^2}

where

G=6.67\cdot 10^{-11} kg^{-1} m^{3} s^{-2} is the gravitational constant

m1 = 20,000 kg is the mass of the first object

m2 = 12,500 kg is the mass of the second object

r = 5 m is the distance between the two objects

Substituting the numbers inside the equation, we find

F=(6.67\cdot 10^{-11})\frac{(20,000 kg)(12,500 kg)}{(5 m)^2}=6.67\cdot 10^{-4} N


2)  2.7\cdot 10^{-3} N

From the formula in exercise 1), we see that the force is inversely proportional to the square of the distance:

F \sim \frac{1}{r^2}

this means that if we cut in a half the distance without changing the masses, the magnitude of the forces changes by a factor

F'\sim \frac{1}{(r/2)^2}=4 \frac{1}{r^2}=4F

So, the gravitational force increases by a factor 4. Therefore, the new force will be

F' = 4 F=4(6.67\cdot 10^{-4} N)=2.7\cdot 10^{-3} N


3)  12.5 Nm

The torque is equal to the product between the magnitude of the perpendicular force and the distance between the point of application of the force and the centre of rotation:

\tau=Fd

Where, in this case:

F = 25 N is the perpendicular force

d = 0.5 m is the distance between the force and the center

By using the equation, we find

\tau=(25 N)(0.5 m)=12.5 Nm


4) 0.049 kg m^2/s

The relationship between angular momentum (L), moment of inertia (I) and angular velocity (\omega) is:

L=I\omega

In this problem, we have

I=0.007875 kgm^2

\omega=6.28 rad/s

So, the angular momentum is

L=I\omega=(0.007875 kgm^2)(6.28 rad/s)=0.049 kg m^2/s

6 0
3 years ago
The part of a sound wave in which the particles are most spread out is called a(n)
Nutka1998 [239]
Seismic wave is the answer
7 0
3 years ago
An exoplanet with one half of Earth's mass and 50% of Earth's radius is discovered.
Georgia [21]

Answer:

The space cadet that weighs 800 N on Earth will weigh 1,600 N on the exoplanet

Explanation:

The given parameters are;

The mass of the exoplanet = 1/2×The mass of the Earth, M = 1/2 × M

The radius of the exoplanet = 50% of the radius of the Earth = 1/2 × The Earth's radius, R = 50/100 × R = 1/2 × R

The weight of the cadet on Earth = 800 N

The \ weight, W  =G\dfrac{M \times m}{R^{2}} = 800 \ N

Therefore, for the weight of the cadet on the exoplanet, W₁, we have;

W_1   =G\dfrac{\dfrac{M}{2}  \times m}{ \left ( \dfrac{R}{2} \right ) ^{2}} = G\dfrac{\dfrac{M}{2}  \times m \times 4}{ R ^{2}} = 2 \times G \times  \dfrac{M \times m}{R^{2}} = 2 \times 800 \, N = 1,600 \, N

The weight of a space cadet on the exoplanet, that weighs 800 N on Earth = 1,600 N.

7 0
3 years ago
9. [03.03]
Evgen [1.6K]

Answer:

Circuit one will have more current than circuit two

Explanation:

I am assuming that you have to see which circuit has the greater current in this case. Well, this is the perfect example of Ohm's Law, which states the following -

V = IR,

where V = voltage / potential difference, I = current, and R = resistance

If one circuit has twice the voltage and half the resistance of the second circuit, as voltage is directly proportional to the resistance -

2V = I( 1 / 2R ),

4V = IR,

I = 4V / R

Whereas in the second circuit -

V = IR,

I = V / R

As you can note, voltage is directly proportional to the current ( I ) as well as the resistance. The only difference between the two formulas I = 4V / R, and I = V / R is the difference in the voltage. With the voltage being 4 times greater in the first circuit, and current is 4 times greater in the first circuit as well.

<u><em>Hence, circuit one will have more current than circuit two</em></u>

5 0
3 years ago
Read 2 more answers
Who else has 3 20s hmmmmmmm
hichkok12 [17]

dollar bills if so def. not me but grades 4

3 0
2 years ago
Read 2 more answers
Other questions:
  • How can you tell if a diamond real or fake
    5·2 answers
  • Which poison was used in the Jonestown massacre?
    14·2 answers
  • How does a wildfire impact a population of oak trees?
    10·2 answers
  • Which statement best summarizes the central idea of "Applications of Newton's Law
    10·2 answers
  • I need help with high school chemistry!!! Can someone help
    6·1 answer
  • Using one or more of your senses to gather information is
    10·2 answers
  • Which of the following are examples of radiation? (Choose all that apply)
    9·1 answer
  • "Two point charges exert a 6.50 N force on each other. What will the force (in N) become if the distance between them is increas
    6·1 answer
  • How much time does it take for a car with a speed of 85 m/s to drive a distance of 200 m? (1 point)
    15·1 answer
  • If the force exerted by a man is halved and the distance is multiplied by four, by which factor does the work change ?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!