The answer is λ₂ = 6.48 cm or 6.52 cm.
The out-of-tune guitar may have a wavelength between "6.48 cm" and "6.52 cm."
fb = |f2 − f1|
f₁ = 343/0.064
= 5276Hz
f₂ = 5276.9 Hz ± 17 Hz
f₂ = 5293.9 Hz or 5259.9 Hz
Now, calculating the possible wavelengths:
λ = 343/ 5259.9 or 343/ 5293.9
λ₂ = 6.48 cm or 6.52 cm
<h3>Why is beat frequency important?</h3>
When two waves with almost identical frequencies traveling in the same direction collide at a certain location, beats are produced. The opposing beneficial and harmful disruption causes the sound to alternatively be loud and weak whenever two sound waves with different frequencies reach your ear. This is referred to as beating.
The entire value of the frequency difference between the two waves is the beat frequency.
The following formula yields the beat frequency:
fb = |f2 − f1|
Learn more about beat frequency here:
brainly.com/question/14705053
#SPJ4
The Swamp
There are many websites that say the rainforest but the rainforest is warmer and gets rain year round and swamps are warm and gets lots of rain but not year round.
Force acting during collision is internal so momentum is conserve
so (initial momentum = final momentum) in both directions
Two cars collide at an icy intersection and stick together afterward. The first car has a mass of 1150 kg and was approaching at 5.00 m/s due south. The second car has a mass of 750 kg and was approaching at 25.0 m/s due west.
Let Vx is and Vy are final velocities of car in +x and +y direction respectively.
initial momentum in +ve x (east) direction = final momentum in +ve x direction (east)
- 750*25 + 1150*0 = (750+1150)
Vx
initial momentum in +ve y (north) direction = final momentum in +ve y direction (north)
750*0 - 1150*5 = (750+1150)
Vy
from here you can calculate Vx and Vy
so final velocity V is
<span>V=<span>(√</span><span>V2x</span>+<span>V2y</span>)
</span>
and angle make from +ve x axis is
<span>θ=<span>tan<span>−1</span></span>(<span><span>Vy</span><span>Vx</span></span>)
</span><span>
kinetic energy loss in the collision = final KE - initial KE</span>