Answer:
- 178 ºC
Explanation:
The ideal gas law states that :
PV = nRT,
where P is the pressure, V is the volume, n is number of moles , R is the gas constant and T is the absolute temperature.
For the initial conditions :
P₁ V₁ = n₁ R T₁ (1)
and for the final conditions:
P₂V₂= n₂ R T₂ where n₂ = n₁/2 then P₂ V₂ = n₁/2 T₂ (2)
Assuming V₂ = V₁ and dividing (2) by Eqn (1) :
P₂ V₂ = n₁/2 R T₂ / ( n₁ R T₁) then P₂ / P₁ = 1/2 T₂ / T₁
4.10 atm / 25.7 atm = 1/2 T₂ / 298 K ⇒ T₂ = 0.16 x 298 x 2 = 95.1 K
T₂ = 95 - 273 = - 178 º C
Answer:
I believe the answer The case study was influenced by bias, and led to incorrect conclusions being drawn. plz correct me if I am wrong
Explanation:
Answer:
The specific heat of the metal is 2.09899 J/g℃.
Explanation:
Given,
For Metal sample,
mass = 13 grams
T = 73°C
For Water sample,
mass = 60 grams
T = 22°C.
When the metal sample and water sample are mixed,
The addition of metal increases the temperature of the water, as the metal is at higher temperature, and the addition of water decreases the temperature of metal. Therefore, heat lost by metal is equal to the heat gained by water.
Since, heat lost by metal is equal to the heat gained by water,
Qlost = Qgain
However,
Q = (mass) (ΔT) (Cp)
(mass) (ΔT) (Cp) = (mass) (ΔT) (Cp)
After mixing both samples, their temperature changes to 27°C.
It implies that
, water sample temperature changed from 22°C to 27°C and metal sample temperature changed from 73°C to 27°C.
Since, Specific heat of water = 4.184 J/g°C
Let Cp be the specific heat of the metal.
Substituting values,
(13)(73°C - 27°C)(Cp) = (60)(27°C - 22℃)(4.184)
By solving, we get Cp =
Therefore, specific heat of the metal sample is 2.09899 J/g℃.
a. t=0.553 s
b. vox(horizontal speed) = 3.62 m/s
<h3>Further explanation</h3>
Given
h = 1.5 m
x = 2 m
Required
a. time
b. vo=initial speed
Solution
Free fall motion
a. h = 1/2 gt²(vertical motion=h=voyt+1/2gt²⇒voy = 0)

t = √2h/g
t = √2.1.5/9.8
t=0.553 s
b. x=vox.t(horizontal motion)

vox=x/t
vox=2/0.553
vox=3.62 m/s
Answer:
they causes climate change by trapping heat and also they contribute to respiratory diseases from smog and air pollution