Answer:
The ideal gas equation
Explanation:
The ideal gas equation is derived from the combination of three gas laws:
- Boyle's law
- Charles's law
- Avogadro's law.
The ideal gas law is expressed mathematically as: PV=nRT where:
P is pressure
V is volume
n is the number of moles
R is the ideal gas law
T is temperature.
To obtain the combined gas law, we assume that n=1 and this gives:
= R
Therefore:
= 
Physical changes can be reversed and chemical changes can’t be reversed. A physical property is a characteristic which can be identified without changing the substance but to identify a chemical property, you do have to change the substance.
Answer:
0.41kg/sec
Explanation:
PV= nRT
Given : V= 505 L
P=0.88 atm
R= 0.08206 Latm/K*mol
T= 172 .0C = 172+273 = 445 K
n = PV /RT = 0.88 * 505 / 0.08206 * 445 = 12.17 moles per sec of N2 are consumed
As per reaction : N2 + 3H2 ----> 2NH3
1 mole N2 is consumed to produce 2 moles NH3
moles of NH3 produced per sec :
(2 moles NH3/1mol N2) * 12.17 moles N2 = 24.34 moles NH3 per sec
grams of NH3 produced per sec =
24.34 moles NH3 per sec * molar mass NH3 = 24.34 moles NH3 per sec * 17.031 g/mol = 414.5 g NH3 per sec
rate in Kg/sec = 414.5 g NH3 per sec * (1kg /1000g) = 0.4145 Kg/sec
= 0.41kg/sec
The idea is to foretell the formation of a carbonyl compound by the reaction between alcohol and too much pyridinium chlorochromate. An oxidizing agent called pyridinium chlorochromate converts the alcohol group into the 1carbonyl group.
The carbonyl molecule that results from the reaction will depend on the reactant's OH group. Pyridinium chlorochromate [PCC] converts primary OH to aldehydes, whereas it converts secondary OH to ketones, and oxidation of tertiary OH has little effect. Alcohols and pyridinium chlorochromate [PCC] react to create a carbonyl molecule.
From primary alcohols to aldehydes and from secondary alcohols to ketones, pyridinium chlorochromate oxidizes alcohols one step up the oxidation ladder. pyridinium chlorochromate will not oxidize aldehydes to carboxylic acids, in contrast to chromic acid. Comparable to Pyridine (the Collins reagent) and CrO3 will both oxidize primary alcohols to aldehydes. Here are two instances of pyridinium chlorochromate being used.
To learn more about pyridinium chlorochromate please visit -
brainly.com/question/14019316
#SPJ4
Answer:
their warfare had changed dramatically