An investigator can collect hairs they observe visually (with tweezers or by hand), and they can also use clear tape to lift non-visible hair from a variety of surfaces, such as clothing. Other methods of hair sample collection include combing and clipping methods.
<h3>
Answer:</h3>
495 g K₃N
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
3.77 mol K₃N
<u>Step 2: Identify Conversions</u>
Molar Mass of K - 39.10 g/mol
Molar Mass of N - 14.01 g/mol
Molar Mass of K₃N - 3(39.10) + 14.01 = 131.31 g/mol
<u>Step 3: Convert</u>
- Set up:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
495.039 g K₃N ≈ 495 g K₃N
A.
→ 
B.
→ 
C.
→ 
What is a balanced chemical equation?
An equation that has an equal number of atoms of each element on both sides of the equation is called a balanced chemical equation.
A.
→ 
B.
→ 
C.
→ 
Learn more about the balanced chemical equation here:
brainly.com/question/15052184
#SPJ1
Answer:
The mass of water
= 39.18 gm
Explanation:
Mass of iron
= 32.5 gm
Initial temperature of iron
= 22.4°c = 295.4 K
Specific heat of iron
= 0.448 
Mass of water =
Specific heat of water 
Initial temperature of water
= 336 K
Final temperature after equilibrium
= 59.7°c = 332.7 K
When iron rod is submerged into water then
Heat lost by water = Heat gain by iron rod
(
-
) =
(
-
)
Put all the values in above formula we get
× 4.2 × ( 336 - 332.7 ) = 32.5 × 0.448 × ( 332.7 - 295.4 )
= 39.18 gm
Therefore the mass of water
= 39.18 gm