1. We assume, that the number 92.4 is 100% - because it's the output value of the task.
<span>2. We assume, that x is the value we are looking for. </span>
<span>3. If 92.4 is 100%, so we can write it down as 92.4=100%. </span>
<span>4. We know, that x is 150% of the output value, so we can write it down as x=150%. </span>
5. Now we have two simple equations:
1) 92.4=100%
2) x=150%
where left sides of both of them have the same units, and both right sides have the same units, so we can do something like that:
92.4/x=100%/150%
6. Now we just have to solve the simple equation, and we will get the solution we are looking for.
7. Solution for what is 150% of 92.4
92.4/x=100/150
<span>(92.4/x)*x=(100/150)*x - </span>we multiply both sides of the equation by x
<span>92.4=0.666666666667*x - </span>we divide both sides of the equation by (0.666666666667) to get x
<span>92.4/0.666666666667=x </span>
<span>138.6=x </span>
x=138.6
<span>now we have: </span>
<span>150% of 92.4=138.6</span>
I believe the correct answer from the choices listed above is option A. The <span>system can be changed so that the two equations have equal x-coefficients by multiplying </span><span>both sides of the top equation by 2 resulting to 6x + 4y = 24. Hope this answers the question.</span>
Answer:
5%
Step-by-step explanation:
303 = 6060p
303/6060 = p
.05 = p
Note: When I use the double equal sign, I mean the triple bar used with modular arithmetic
10^3 = 1000 == -1 (mod 1001)
10^3 == -1 (mod 1001)
(10^3)^672 == (-1)^672 (mod 1001)
(10^(3*672) == 1 (mod 1001)
10^2016 == 1 (mod 1001)
10*10^2016 == 10*1 (mod 1001)
10^2017 == 10 (mod 1001)
Final Answer: 10