Answer:
4.55 x 10⁹m
Explanation:
Given parameters:
Mass of object 1 = 3.1 x 10⁵kg
Mass of object 2 = 6.5 x 10³kg
Gravitational force = 65N
Unknown:
Distance between them = ?
Solution:
To solve this problem, we use the expression below from the universal gravitational law;
Fg =
G = 6.67 x 10⁻¹¹
65 =
Distance = 4.55 x 10⁹m
Answer:
0.12
Explanation:
The acceleration due to gravity of a planet with mass M and radius R is given as:
g = (G*M) / R²
Where G is gravitational constant.
The mass of the planet M = 3 times the mass of earth = 3 * 5.972 * 10^24 kg
The radius of the planet R = 5 times the radius of earth = 5 * 6.371 * 10^6 m
Therefore:
g(planet) = (6.67 * 10^(-11) * 3 * 5.972 * 10^24) / (5 * 6.371 * 10^6)²
g(planet) = 1.18 m/s²
Therefore ratio of acceleration due to gravity on the surface of the planet, g(planet) to acceleration due to gravity on the surface of the planet, g(earth) is:
g(planet)/g(earth) = 1.18/9.8 = 0.12
Answer:
blue star is hotter than red
Explanation:
The colour of a star depends on its temperature.
Lesser the temperature means lesser be the energetic. less energy means longer wavelength. Between blue and red, red colour has longer wavelength. So, the red colored star is colder than blue coloured star.
Blue coloured star is hotter than red coloured star.
Answer:
Explanation:
(a) Work done, W = 1.82 x 10^4 J
(b) internal energy, U = - 4.07 x 10^4 J ( as it decreases)
(c) According to the first law of thermodynamics
Q = W + U
Q = 1.82 x 10^4 - 4.07 x 10^4
Q = - 2.25 x 10^4 J
Answer: 29.17m/s^2
Explanation:
Given the following :
Velocity = 525 m/s
Time = 18 seconds
Acceleration = change in Velocity with time
Using the motion equation:
v = u + at
Where v = final Velocity
u = Initial Velocity and t = time
Plugging our values
525 = 0 + a × 18
525 = 18(a)
a = 525 / 18
a = 29.166666
a = 29.17 m/s^2