Answer:
p = -8 kg-m/s
Explanation:
Given that,
Initial speed of the rock, u = 8 m/s
Mass of the rock, m = 1 kg
The ball travels up to a maximum height, then returns to the ground.
We need to find the rock's momentum as it strikes the ground. Let v be the final speed of the rock. Its final speed is as same as initial speed i.e. 8 m/s but in negative direction. So
p = mv
p = 1 kg × (-8 m/s)
= -8 kg-m/s
So, the rock's momentum as it strikes the ground is (-8 kg-m/s).
Answer:
you could talk about the people and say something like change
Explanation:
Answer:
Option D (Alphonse Bertillon) is the correct response.
Explanation:
- He seems to have been a policeman turned biometrics expert from France. Forensic techniques such as forensic record analysis were developed by Bertillon.
- To retain proof, he always pioneered or developed the use of such galvanoplastic compounds as molds for footsteps as well as ballistics. To research physical changes with age, Bertillon has developed a method focused on images of almost the same person’s performance.
All those other choices weren’t connected to the instance offered. So, the best one is the one described.
Answer:
10s
Explanation:
If it took Beatrice 25 seconds to complete the race
Distance = 100 meter
Beatrice speed = 100/25
= 4m/s
If Alice runs at a constant speed and crosses the finish line $5$ seconds, she must have completed the race in 20s (25 -5).
Her speed where constant
= 100/20
= 5 m/s
It would take Alice
= 50/5
= 10s
It would take Alice 10s to run $50$ meters.
I would rather be hit by the deflated ball because it wouldn't hurt as bad because it wouldn't have a lot of weight to hurt me in anyway