Answer:
when the ground is very hot and the air is cool.
Explanation:
The hot earth warms a layer of air right above the ground. Light is refracted as it passes through the cool air and onto the hot air sheet (bent). A coating of very warm air near the earth bends the light from the sky almost into a U-shaped bend.
Answer:
The last two bearings are
49.50° and 104.02°
Explanation:
Applying the Law of cosine (refer to the figure attached):
we have
x² = y² + z² - 2yz × cosX
here,
x, y and z represents the lengths of sides opposite to the angels X,Y and Z.
Thus we have,

or

substituting the values in the equation we get,

or

or
X = 26.47°
similarly,

or

or
Y = 49.50°
Consequently, the angel Z = 180° - 49.50 - 26.47 = 104.02°
The bearing of 2 last legs of race are angels Y and Z.
#1). Anthony does the same amount of work as Angel, with <em>more power</em>.
#2). Power = (Work)/(Time) = 41,000 J / 500 s = <em>82 watts .</em>
#3). Power = (Work) / (Time) = 83 J / 3 sec = <em>27.7 watts</em>
Answer:
A. The bomb will take <em>17.5 seconds </em>to hit the ground
B. The bomb will land <em>12040 meters </em>on the ground ahead from where they released it
Explanation:
Maverick and Goose are flying at an initial height of
, and their speed is v=688 m/s
When they release the bomb, it will initially have the same height and speed as the plane. Then it will describe a free fall horizontal movement
The equation for the height y with respect to ground in a horizontal movement (no friction) is
[1]
With g equal to the acceleration of gravity of our planet and t the time measured with respect to the moment the bomb was released
The height will be zero when the bomb lands on ground, so if we set y=0 we can find the flight time
The range (horizontal displacement) of the bomb x is
[2]
Since the bomb won't have any friction, its horizontal component of the speed won't change. We need to find t from the equation [1] and replace it in equation [2]:
Setting y=0 and isolating t we get

Since we have 


Replacing in [2]


A. The bomb will take 17.5 seconds to hit the ground
B. The bomb will land 12040 meters on the ground ahead from where they released it