Answer:
a) 4.2m/s
b) 5.0m/s
Explanation:
This problem is solved using the principle of conservation of linear momentum which states that in a closed system of colliding bodies, the sum of the total momenta before collision is equal to the sum of the total momenta after collision.
The problem is also an illustration of elastic collision where there is no loss in kinetic energy.
Equation (1) is a mathematical representation of the the principle of conservation of linear momentum for two colliding bodies of masses
and
whose respective velocities before collision are
and
;

where
and
are their respective velocities after collision.
Given;

Note that
=0 because the second mass
was at rest before the collision.
Also, since the two masses are equal, we can say that
so that equation (1) is reduced as follows;

m cancels out of both sides of equation (2), and we obtain the following;

a) When
, we obtain the following by equation(3)

b) As
stops moving
, therefore,

Several short trips taken from a cold start can use ...twice... as much fuel as a longer multi-purpose trip covering the same distance when the engine is warm.
In cold weather, properly designed gasoline aids in engine starting, while in hot weather, it helps prevent vapor lock. In order to meet the requirements of a modern engine, the fuel must have the volatility for which the engine's fuel system was built and an antiknock quality strong enough to prevent knock during routine operation.
During the intake phase, the air and fuel are combined before being introduced into the cylinder. The spark ignites the fuel-air mixture after the piston compresses it, resulting in combustion. During the power stroke, the piston is propelled by the expansion of the combustion gases.
To learn more about engine and fuel please visit -
brainly.com/question/5181209
#SPJ4
Answer:
the answer is A: voluntary reflexes
Explanation:
because Alcohol poisoning can effect the brain which voluntary is something in the brain
You would divide 6 into 1000 so your answer is B. 166
PEg = Mass x Height x Gravity. So it doesn't matter how much PEg she started with, since you're finding how much it changed when she walked down 2.5 meters of stairs. So by plugging into the equation, you'll find how much potential energy was lost by walking down. (I'll leave it up to you since idk if you use 10 or 9.8 as gravity)