Answer:
The number of charges is 1.25 × 10¹⁰
Explanation:
Current is the amount of charge flowing through a conductor per second. The formula for current (I) is given as:
I = Q/t
Where Q is the charge flowing in coulombs and t is the time taken in seconds.
Given that I = 2.0 nA = 2 × 10⁻⁹ A and t = 1 sec
I = Q / t
Q = It = 2 × 10⁻⁹ × 1 = 2 × 10⁻⁹ C
Since each charge = 1.6 x 10⁻¹⁹ C, therefore:
The number of charges = 2 × 10⁻⁹ C / 1.6 x 10⁻¹⁹ C = 1.25 × 10¹⁰
Answer:
The net force is 1.8N
Explanation:
Given that the formula for force is Force = mass×acceleration. So you have to substitute the values into the formula :

Let mass = 0.15kg,
Let acceleration = 12m/s²,


The gravitational force between the spheres is

where <em>G</em> = 6.674 x 10⁻¹¹ N m²/kg².
The weight of the lighter sphere is

where <em>g</em> = 9.80 m/s².
The ratio between the two forces is then

Answer:
0.4113772 s
Explanation:
Given the following :
Mass of bullet (m1) = 8g = 0.008kg
Initial horizontal Velocity (u1) = 280m/s
Mass of block (m2) = 0.992kg
Maxumum distance (x) = 15cm = 0.15m
Recall;
Period (T) = 2π√(m/k)
According to the law of conservation of momentum : (inelastic Collison)
m1 * u1 = (m1 + m2) * v
Where v is the final Velocity of the colliding bodies
0.008 * 280 = (0.008 + 0.992) * v
2.24 = 1 * v
v = 2.24m/s
K. E = P. E
K. E = 0.5mv^2
P.E = 0.5kx^2
0.5(0.992 + 0.008)*2.24^2 = 0.5*k*(0.15)^2
0.5*1*5.0176 = 0.5*k*0.0225
2.5088 = 0.01125k
k = 2.5088 / 0.01125
k = 223.00444 N/m
Therefore,
Period (T) = 2π√(m/k)
T = 2π√(0.992+0.008) / 233.0444
T = 2π√0.0042910
T = 2π * 0.0655059
T = 0.4113772 s
Answer:
20 Hz, 20000 Hz
0.0166 m, 16.6 m
Explanation:
The minimum frequency that a human ear can hear is 20 Hz
The maximum frequency that a human ear can hear is 20000 Hz.
v = Velocity of sound = 332 m/s
Wavelength is given by

The longest wavelength that can be heard by the human ear is 16.6 m

The shortest wavelength that can be heard by the human ear is 0.0166 m.