1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
drek231 [11]
2 years ago
14

HELP ASAP 100 POINTS NEED ANSWERED ASAP

Physics
2 answers:
adelina 88 [10]2 years ago
5 0

Answer:

yes

Explanation:

worty [1.4K]2 years ago
4 0

Answer:

Hmm looks tricky

Explanation:

You might be interested in
There is given an ideal capacitor with two plates at a distance of 3 mm. The capacitor is connected to a voltage source with 12
Licemer1 [7]

The kinematic energy of the positive charge is 2 10⁻⁸ J

This electrostatics exercise must be done in parts, the first part: let's start by finding the charge of the capacitor, the capacitance is defined by

        C = \frac{Q}{\Delta V}

        C = ε₀ \frac{A}{d}

we solve for the charge (Q)

        \frac{Q}{\Delta V} = \epsilon_o \frac{A}{d}

indicates that for the initial point d₁ = 3 mm = 0.003 m and the voltage is DV₁ = 12

         Q = \epsilon_o \  \frac{A \ \Delta V_1 }{d_1}

Now the voltage source is disconnected so the charge remains constant across the ideal capacitor.

For the second part, the condenser is separated at d₂ = 5mm = 0.005 m

         Q = \epsilon_o \  \frac{A \ \Delta V_2 }{d_2}

we match the expressions of the charge and look for the voltage

          \frac{\Delta V_1}{d_1} = \frac{\Delta V_2}{d_2}

          ΔV₂ = \frac{d_2}{d_1 } \ \Delta V_1

The third part we use the concepts of conservation of energy

starting point. With the test load (q = 1 nC = 1 10⁻⁹ C) next to the left plate

          Em₀ = U = q DV₂

          Em₀ = q  \frac{d_2}{d_1 } \ \Delta V_1

           

final point. Proof load on the right plate

         Em_f = K

energy is conserved

         Em₀ = em_f

         q  \frac{d_2}{d_1 } \ \Delta V_1 = K

   

we calculate

         K = 1 10⁻⁹  12  \frac{0.005}{0.003}  

         K = 20 10⁻⁹ J

In this exercise, as the conditions at two different points of separation give, the area of ​​the condenser is not necessary and with conservation of energy we find the final kinetic energy of 2 10⁻⁸ J

3 0
3 years ago
When conducting this experiment, some procedures call for heating the substance several
Natalija [7]

Answer:

when completing a science experiment it is important to run multiple tests do as to reduce the risk of any outliers of false results

8 0
3 years ago
Based on the data given, in what direction will the car accelerate?
skad [1K]
Vertical forces:
There is a force of 579N acting upward, and a force of 579N
acting downward.
The vertical forces are balanced ... they add up to zero ...
so there's no vertical acceleration. 
Not up, not down.

Horizontal forces:
There is a force of 487N acting to the left, and a force of 632N
acting to the right.
The net horizontal force is

        (487-left + 632-right)  -  (632-right - 487-right) =  145N to the right.

The net force on the car is all to the right.
The car accelerates to the right.
7 0
3 years ago
If a proton and an electron are released when they are 7.00×10−10 m apart (typical atomic distances), find the initial accelerat
Ugo [173]

Answer:

The acceleration of the proton is 2.823 x 10¹⁷ m/s²

The acceleration of the electron is 5.175 x 10²⁰ m/s²

Explanation:

Given;

distance between the electron and proton, r = 7 x 10⁻¹⁰ m

mass of proton, m_p = 1.67 x 10⁻²⁷ kg

mass of electron, m_e = 9.11 x 10⁻³¹ kg

The attractive force between the two charges is given by Coulomb's law;

F = \frac{k(q_p)(q_e)}{r^2}

where;

k is Coulomb's constant = 9 x 10⁹ Nm²/c²

F = \frac{k(q_p)(q_e)}{r^2} \\\\F = \frac{(9*10^9)(1.602*10^{-19})(1.602*10^{-19})}{(7*10^{-10})^2} \\\\F = 4.714 *10^{-10} \ N

Acceleration of proton is given by;

F = ma

F = m_pa_p\\\\a_p = \frac{F}{m_p}\\\\a_p = \frac{4.714*10^{-10}}{1.67*10^{-27}}\\\\a_p = 2.823 *10^{17} \ m/s^2

Acceleration of the electron is given by;

F = m_ea_e\\\\a_e = \frac{F}{m_e}\\\\a_e = \frac{4.714*10^{-10}}{9.11*10^{-31}}\\\\a_e = 5.175 *10^{20} \ m/s^2

7 0
3 years ago
A piano tuner is using a 392 Hz tuning fork to tune the wire for a G-Natural note. She hears 4 beats per second. What are the tw
inysia [295]

A beat is an interference pattern between two sounds of slightly different frequencies, perceived as a periodic variation in volume whose rate is the difference of the two frequencies. Frequency beat is equal to,

f_{beat} =| f_2\pm f_1 |

The reference frequency in our case would be 392Hz, and since there is the possibility of the upper and lower range for the amount of beats per second that the two possible frequencies are heard would be

f_{beat} =|392+4|= 396Hz

f_{beat} =|392-4|=388Hz

Therefore the two possible frequencies the piano wire is vibrating at, would be 396Hz and 388Hz

5 0
3 years ago
Other questions:
  • All the atoms of an element have the same number of which subatomic particles? Select one: a. protons b. electrons c. neutrons
    15·1 answer
  • 32.What is the area under the curve between 0 seconds and 2 seconds?
    15·1 answer
  • _____ is the rate of change in velocity.
    9·2 answers
  • A dog walks a distance of 55.5 meters in 120 seconds. What was its speed?
    11·1 answer
  • The photoelectric work function of a metal is the minimum energy needed to eject an electron by irradiating the metal with light
    6·1 answer
  • Formula:
    12·2 answers
  • (Please help ASAP)
    5·2 answers
  • Which element has the fewest valence electrons?
    10·1 answer
  • A tugboat is pulling a barge into a harbor. The barge is exerting a force of 3000 N against the tugboat.
    6·2 answers
  • What is the impact of roller coaster on human's body
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!