Answer:
Yes, since the choice of the zero o potential energy is arbitrary.
Explanation:
The kinetic energy is due to the motion of the object. The expression for the kinetic energy is as follows;

Here, m is the mass of the object and v is the velocity of the object.
The kinetic energy can not be negative as the velocity is squared. It can be zero and positive.
Potential energy: It is the energy is due to the position of the object.
The expression for the potential energy is as follows;
PE= mgh
Here, g is the acceleration due to gravity and height.
Height can be taken from the reference point, zero which can be taken below zero and above zero. Zero is taken as origin. Below zero, the height is taken as negative and above zero, the height is taken as positive.
The potential energy can be zero, positive and negative.
The total energy is the sum of kinetic energy and potential energy.
E= KE + PE
Here, KE is the kinetic energy and PE is the potential energy.
Therefore, the option (B) is correct.
Answer:
Object distance means what is the distance between pole and object. Image distance means when image is formed then the distance between pole and image is called image distance. Focal length is the distance between pole and the principal focus of the mirror.
A lens is a clear object, usually made of glass or plastic, which is used to refract, or bend light. Lenses can concentrate light rays (bring them together) or spread them out. Common examples of lenses include camera lenses, telescope lenses, eyeglasses, and magnifying glasses. Lenses are often double lenses, meaning they have two curved sides. A convex lens is rounded outward, while a concave lens curves inward. (A great way to remember this is that a concave lens creates an indent like a cave!)
The image distance can be calculated with the knowledge of object distance and focal length with the help of lens formula. In optics, the relationship between the distance of an image (i), the distance of an object (o), and the focal length (f) of the lens are given by the formula known as Lens formula. Lens formula is applicable for convex as well as concave lenses. These lenses have negligible thickness. It is an equation that relates the focal length, image distance, and object distance for a spherical mirror. It is given as,
1/i + 1/o = 1/f
i= distance of the image from the lens
o= distance of the object from the lens
f= focal length of the lens
Explanation:
Hope it is helpful....
Speed = Distance/ Time
Speed = 400 / 4
Speed = 100 km/hr.
100 km per hour.
Answer:
I think the acceleration is 12m/s
Incomplete question. However, I provided a brief about Kinetic energy generation.
<u>Explanation:</u>
Interestingly, Kinetic energy in simple terms refers to the energy possessed by a body in motion.
It is often calculated using the formula E =
A good example of creating even more kinetic energy is a hand crank toy car that moves after you wind it a little, when the car moves it is generating another measure of K.E.