The gravitational force exerted by the earth on a person standing on the earth's surface is 602.74 N.
<h3>What is the gravitational force of the earth on the person?</h3>
The gravitational force exerted by the earth on a person standing on the earth's surface is given below as follows:
where
G = 6.67 * 10⁻¹¹
m¹ = 62 kg
m² = 5.97 * 10²⁷ kg
r = 6.4 * 10⁶ m

Therefore, the gravitational force exerted by the earth on a person standing on the earth's surface is 602.74 N.
Learn more about gravitational force at: brainly.com/question/940770
#SPJ1
Answer:
The correct option is;
c. 22.6
Explanation:
The given parameters are;
The hypotenuse of the vector = 32
The angle of the vector = 45°
Therefore, the vector component in the y-axis is given as follows;

Substituting the values from the question gives;

The vector component in the y-axis,
, is approximately 22.6.
Juice WRLD 999 ,........................
Answer:
a) the one with a lower orbit b) the one with a higher orbit
Explanation:
Let's consider orbital mechanics. To get an object in orbit, we need it to fall to earth parallel to the earth's surface. To understand it easily imagine a projectile thrown horizontally further and further away, at one point, the projectile hits the cannon from behind. Considering there is no wind resistance, that would be a projecile in orbit.
In other words, the circular orbits of some objects around a massive body are due to the equality between centrifugal acceleration and gravity acceleration.
.
so the velocity is

where "G" is the gravitational constant, "M" the mass of the massive body and "r" the distance between the object and the center of gravity of mass M. As you can note, if "r" increase, "v" decrease.
The orbital period of any object in orbit is

where "a" is length of semi-major axis (a = r in circular orbits). So if "r" increase, "T" increase.
Answer:
1st statement is true
Explanation:
Here statement 1 is correct
Let think about it, if you push down the bar then you are lifting your weight off the pedals.
Obviously, this question does not take into account of racing bikes with straps on pedals, where you would push on one side and pull on the other to match your legs are doing, with straps your other leg can pull pedals upward.