1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Serga [27]
3 years ago
10

3. Do Newton's Laws of Motion apply to a Water Spout? If so, how?

Physics
1 answer:
PSYCHO15rus [73]3 years ago
6 0
Yes it’s spills out becasue bucket
You might be interested in
Why does a black hole have a stronger gravitational pull than the star that collapse to form it?​
Studentka2010 [4]

Answer:

We consider Black Holes as an object that possesses extreme gravitational pull, but wait aren’t they have the same mass(or less) as that of their parent star. And we know that gravitational pull ‘F’ is directly proportional to the mass of an object, so if the mass is same(or less) then why do black holes have stronger gravity than the stars they evolved from.

The above consideration that F is directly proportional to the mass is partially correct, one should also mention that F is also inversely proportional to the square of the distance between the considered objects.

F = G*(M*m)/(r^2)

Where:

· F is the force acting on you due to star

· M is the mass of Parent star / Black Hole

· m is the mass of an observer, here it is you

· r is the radial distance between the star and you

We know that black hole formed, has much smaller size than that of its parent star and all that mass is compressed to a much smaller scale. If you consider a Star as having a size of an earth then the black hole formed will have a size of small city.

Let us say that you are standing at an r distance away from a star (r>R1), where R1 is the radius of the star, of course (R1>R2), where R2 is the radius of Black Hole.

The Force by which the star in case 1 attracts you will be equal(or less) to the force by which black hole in case 2. So, there is nothing increase in gravitational pull, it is same(or less) as that of the parent star.

Wait a minute, then why people say that black holes have massive gravitational pull.

The gravitational pull increases as we move closer to the black hole, and when we are at its surface, it is enormous as compare to its star surface, because of the difference in the size.

We know that gravitational pull not only depends upon the mass but also depends upon the radial distance between the concerned objects here, it is you and the black hole.

Here, the size of the black hole is much smaller than that of its parent star, i.e (R1>>>R2), and thus we get F1<<<F2, and that is why we say that the black hole has enormous gravitational pull, such that nothing can escape, not even light.

8 0
3 years ago
Am i correct? If not then which one
cupoosta [38]

Answer:

Yes, it's correct

Explanation:

Newton's second Law states that the acceleration of an object is proportional to the net force applied on it, according to the equation:

F=ma

where

F is the net force on the object

m is the mass of the object

a is the acceleration of the object

We can re-arrange the previous equation in order to solve explicitely for a, the acceleration, and we find:

F=ma\\\frac{F}{m}=\frac{ma}{m}\\\frac{F}{m}=a\\a=\frac{F}{m}

So, we see that the acceleration is proportional to the net force and inversely proportional to the mass of the object.

4 0
3 years ago
In one of the original Doppler experiments, a tuba was played at a frequency of 64.0 Hz on a moving flat train car, and a second
wolverine [178]

Answer:

 f_{beat} = 1.64\ Hz

Explanation:

given,

frequency of tuba.f = 64 Hz

Speed of train approaching, v = 8.50 m/s

beat frequency = ?

using Doppler's effect formula

 f' = f(\dfrac{v}{v-v_s})

v_s is the velocity of the source

v is the speed of sound, v = 340 m/s

now,

 f' = 64\times (\dfrac{340}{340 - 8.50})

       f' = 65.64 Hz

now, beat frequency is equal to

 f_{beat} = f' - f

 f_{beat} = 65.64 - 64

 f_{beat} = 1.64\ Hz

hence, beat frequency is equal to 1.64 Hz

3 0
3 years ago
a man hits a golf ball (0.2kg) which accelerates at a rate of 20 m/s what amount of force acted on the ball
MAVERICK [17]

The ball only accelerates during the brief time that the club is in contact
with it. After it leaves the club face, it takes off at a constant speed.

If it accelerates at 20 m/s² during the hit, then

   Force = (mass) x (acceleration) = (0.2kg) x (20 m/s²) = <em>4 newtons</em> .


8 0
3 years ago
Read 2 more answers
Which one is itttttttttttt
Vlada [557]

Answer:

Red

Explanation:

6 0
3 years ago
Other questions:
  • Kristina works out seven days a week. Lately, she has been tired, and her body aches. If she is overtraining, which training pri
    7·1 answer
  • The owner of a window treatment company wants to design Shades that will cover the windows of the house. the shades should also
    14·2 answers
  • What is the velocity of a 6.5 kg bowling ball that has a momentum of 26
    13·1 answer
  • What is the formula for lithium and chlorine?
    14·2 answers
  • Two coaxial cylindrical conductors are shown in perspective and cross-section above. The inner cylinder has radius a = 2 cm, len
    6·1 answer
  • Suppose a person sits on a skateboard with her feet up and throws a ball. Explain why she will move as a result of throwing the
    13·1 answer
  • ILL GIVE BRAINLIEST.
    14·1 answer
  • Help????????????????
    8·1 answer
  • A speedboat is moving at a rate of 45 km per hour travels a distance of 27 km. How long did it take to go to 27 km.
    15·1 answer
  • Question 10 of 10
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!