The mixture flow rate in lbm/h = 117.65 lbm/h
<h3>Further explanation</h3>
Given
15.0 wt% methanol
The flow rate of the methyl acetate :100 lbm/h
Required
the mixture flow rate in lbm/h
Solution
mass of methanol(CH₃OH, Mw= 32 kg/kmol) in mixture :
mass of the methyl acetate(C₃H₆O₂,MW=74 kg/kmol,85% wt) in 200 kg :
Flow rate of the methyl acetate in the mixture is to be 100 lbm/h.
1 kg mixture = 0.85 .methyl acetate
So flow rate for mixture :
Carbon dioxide has a total of 16 valence electrons. 1. To determine the number of valence electrons of carbon dioxide (CO2), first determine the number of valence electrons of each of the elements in the molecule.
a. We have 1 carbon (C) molecule, and 2 oxygen (O) molecules.
b. The carbon molecule has 4 valence electrons and each oxygen molecule has 6 oxygen molecules.
2. Add up the valence electrons of each of the elements
4 + (2 x 6) = 16
(from C) (2 oxygen molecules, with 6 valence electrons each)
Thus, CO2 has a total of 16 valence electrons.
The number of valence electrons can be more clearly seen from the Lewis structure of the CO2 in the figure below (Source: http://chemistry.tutorvista.com/inorganic-chemistry/bonding-electrons.html). The the dots surrounding the letters represent the valence electrons.
An element cannot be broken down any further. Elements can be found on the periodic table
Particle is more than an atom - a particle I beleive implies either a diatomic gas or just a plain old unbonded noble gas atom? hope this helped.