Answer:
Explanation:
Osmosis is the process in which the molecules of a solvent move from a region of low concentration to a region of higher concentration through a semi-permeable barrier.
While eating the chips, <u>the salt content from the chips makes the surrounding solution of the cells to have an increase in salt concentration causing an hypertonic solution</u>. An hypertonic solution is a solution that has more solute (salt) than the (solute in a) cell. <u>This increase in salt concentration around the cells causes the cells to release water to neutralize the high salt concentration in the solution around the cell (in order to maintain homeostasis)</u> which causes dehydration in the individual and hence making the individual to be thirsty. <u>The body attempts to maintain balance by passing this excess salt out of the body in the form of urine hence the reason for the dark colour in the urine </u>(because if the body doesn't rid itself of the high salt concentration, the cells could shrink and die as a result).
The span of the moons center has nothing to do with the effect hypothesis, however has a remark with materials on the moon itself.
Since this hypothesis itself did not merged with regards to the arrangement for the lunar center however it emerged as a result of the materials that make up the moon itself in light of the fact that the materials that make up the moon contrasted with our own particular planet looks like an enormous similitude.
Or the answer will be:
If the event that effect the hypothesis is r8ght at that point after the impact material from the surface and mantle of the earth was brushed off into space gathering into the moon. There would be next to no material to shape a gigantic center.
Answer:
Snake venom involves enzymes, proteins and substances with a cytotoxic, neurotoxic effect and coagulants.
Explanation:
Snake venom is very deadly because of the enzymes it contains. For example, Snake venom hinders cholinesterase which causes loss of muscle control.
Answer:
The voltage-gated potassium channels associated with an action potential provide an example of what type of membrane transport?
A. Simple diffusion.
B.<u> Facilitated diffusion.
</u>
C. Coupled transport.
D. Active transport.
You are studying the entry of a small molecule into red blood cells. You determine the rate of movement across the membrane under a variety of conditions and make the following observations:
i. The molecules can move across the membrane in either direction.
ii. The molecules always move down their concentration gradient.
iii. No energy source is required for the molecules to move across the membrane.
iv. As the difference in concentration across the membrane increases, the rate of transport reaches a maximum.
The mechanism used to get this molecule across the membrane is most likely:
A. simple diffusion.
<u>B. facilitated diffusion.
</u>
C. active transport.
D. There is not enough information to determine a mechanism.
Carrier proteins - exist in two conformations, altered by high affinity binding of the transported molecule. Moves material in either direction, down concentration gradient (facilitated diffusion). EXAMPLE: GluT1 erythrocyte glucose transporter.
Channel proteins - primarily for ion transport. Form an aqueous pore through the lipid bilayer. May be gated. Moves material in either direction, down concentration gradient (facilitated diffusion). EXAMPLES: Voltage-gated sodium channel, erytrhocyte bicarbonate exchange protein.
This might be helpful... because I don't know anything about facilitated diffusion.