Answer:
4.45×10¯¹¹ N
Explanation:
From the question given above, the following data were obtained:
Mass of ball (M₁) = 4 Kg
Mass of bowling pin (M₂) = 1.5 Kg
Gravitational constant (G) = 6.67×10¯¹¹ Nm²/Kg²
Distance apart (r) = 3 m
Force of attraction (F) =?
The force of attraction between the ball and the bowling pin can be obtained as follow:
F = GM₁M₂ / r²
F = 6.67×10¯¹¹ × 4 × 1.5 / 3²
F = 4.002×10¯¹⁰ / 9
F = 4.45×10¯¹¹ N
Therefore, the force of attraction between the ball and the bowling pin is 4.45×10¯¹¹ N
Answer:
(iv), (v), (vi) would be incorrect.
Explanation:
(iv) Force isn't transferred from one colliding object to another, but momentum can be.
(v) An object doesn't stop immediately a force stops acting on it. Think of a thrown ball.
(vi) For an object not to move, it means that the net force on the object is zero, and not necessarily that there are no forces acting on the object. For example, an object could be pushed on one side, and be pushed on the other side with an equal force in the opposite direction. The forces would cancel each other and the net force would be zero.
The rest should be correct.
5.91(approx) seconds just divide velocity by acceleration