1. 0.16 N
The weight of a man on the surface of asteroid is equal to the gravitational force exerted on the man:

where
G is the gravitational constant
is the mass of the asteroid
m = 100 kg is the mass of the man
r = 2.0 km = 2000 m is the distance of the man from the centre of the asteroid
Substituting, we find

2. 1.7 m/s
In order to stay in orbit just above the surface of the asteroid (so, at a distance r=2000 m from its centre), the gravitational force must be equal to the centripetal force

where v is the minimum speed required to stay in orbit.
Re-arranging the equation and solving for v, we find:

There water has a lot of salt in it, so it would be denser. People float better when the water is denser.
Answer:
Sorry don't know the answer
The y-component of the stone's velocity when it is 8 m below the hand is 14.86 m / s
v² = u² + 2 a s
s = Displacement
u = Initial velocity
a = Acceleration
u = 8 m / s
s = 8 m
v² = 8² + 2 * 9.8 * 8
v² = 64 + 156.8
v = √ 220.8
v = 14.86 m / s
The equation used to solve the problem is an equation of motion. These equations are designed to locate an object in motion using components such as velocity, displacement, acceleration and time.
Therefore, the y-component of the stone's velocity is 14.86 m / s
To know more about Equations of motion
brainly.com/question/5955789
#SPJ1